УДК 681.5

Выбор кинематической структуры и исследование древовидного исполнительного механизма «Робота — собаки»

А.К. Ковальчук

Приведен обзор кинематических структур исполнительных механизмов некоторых образцов четырехногих шагающих роботов. В качестве биологического прототипа при их выборе рекомендуется использовать скелет собаки. Предложена кинематическая структура, соответствующий ей граф достижимости и уравнения динамики древовидного исполнительного механизма «Робота — собаки».

Составлена программа моделирования и получены численные значения элементов матриц $A(q), B(q, \dot{q}), C(q), H(q),$ входящих в уравнение динамики, а также значения моментов и мощностей в степенях подвижности робота.

Ключевые слова: шагающий робот, древовидный исполнительный механизм, уравнение динамики робота.

A review of kinematic structures of the executive mechanisms of some four-legged walking robots samples has been carried out. When choosing them it is recommended to use a skeleton of a dog as a biological prototype. The article proposes a kinematic structure, a corresponding reachability graph and dynamic equations of the «Robot – dog» tree-like actuator.

The simulation program has been compiled and numerical values of matrix elements A(q), $B(q,\dot{q})$, C(q), H(q), in the equation of dynamics, as well as the values of the moments and powers in the degree of mobility of the robot has been obtained.

Keywords: walking robot, tree-like actuator, dynamic equation of robot.

В последнее время при создании роботов специального назначения ученые всего мира стали уделять большое внимание шагающим роботам.

Отсутствие сплошной колеи при их движении, высокая проходимость в сложных рельефных условиях делают их незаменимыми при выполнении аварийно-спасательных и других специальных работ.

Одной из многочисленных задач, возникающих при разработке таких роботов, является выбор и обоснование их кинематических структур (КС).

Существующие ныне КС шагающих роботов отличаются достаточной геометрической простотой [1-3], что обусловлено фактически «ручным» выбором КС робота, исходя из выполняемых им рабочих операций и логических соображений разработчика.

КОВАЛЬЧУК Александр Кондратьевич кандидат технических наук, доцент, директор МИПК (МГТУ им. Н.Э. Баумана)

Известия высших учебных заведений

Примером шагающего робота с упрощенной КС является Big Dog (рис. 1) [4]. Big Dog — четырехногий робот с адаптивным управлением, созданный фирмой Boston Dynamics совместно с Faster — Miller (Лабораторией реактивного движения (NASA)) и Harvara University Concord Field Station.

Проект Big Dog финансируется Defense Advanced Research Projects Aqency (DARPA — Агентство передовых оборонных исследовательских проектов США). Робот может переносить снаряжение и помогать солдатам на территории, где не может передвигаться обычный транспорт. В ногах робота установлено большое количество разнообразных сенсоров. Робот имеет лазерный гироскоп и систему бинокулярного зрения.

Длина робота Big Dog — 0,91 м, высота — 0,76 м, масса — 110 кг. Он способен передвигаться по труднопроходимой местности со скоростью 6,4 км/ч, перевозить 154 кг груза и подниматься на 35-градусную наклонную плоскость. Его передвижение, равновесие и навигацию контролирует бортовая компьютерная система, которая получает данные от различных сенсоров.

В первых версиях Big Dog приводился в движение двухтактным одноцилиндровым двигателем со скоростью вращения 9000 об/мин, из-за чего был слышен громкий звук мотора. В последующих версиях робота этот демаскирующий недостаток был исправлен. Мотор служит приводом для гидронасоса, который в свою очередь питает гидродвигатели ног. В каждой из ног установлено по четыре гидродвигателя (два для бедренного сустава и по одному для коленного и голеностопного суставов). Каждый из гидродвигателей состоит из гидроцилиндра, сервоклапана, а также датчиков положения и усилия. Робот обладает хорошей устойчивостью: во время испытаний он не падал при ходьбе по льду и при сильных толчках.

Бортовой компьютер робота представляет собой упрощенный вариант платформы PC/104 с процессором класса Pentium под управлением OC QNX.

Дальнейшим продолжением работ фирмы Boston Dynamics по созданию шагающих робо-

Рис. 1. Робот Bid Dog фирмы Boston Dynamics

тов является робот Gheetah (Гепард) (рис. 2) [5]. Работы финансируются DARPA. Биологическим прототипом данного робота является гепард — одно из самых быстрых животных планеты.

В отличие от пока неизвестной области применения, требования к роботу вполне конкретны. Так, «Гепард» должен иметь четыре ноги; гибкий позвоночник; поворачивающиеся шею и голову, а также, возможно, хвост. Робот также должен разумно реагировать на происходящее вокруг. И, конечно, «Гепард» просто обязан очень быстро передвигаться — со скоростью до 110 км/ч. «Гепард» должен быть сконструирован таким образом, чтобы он мог делать крутые повороты, двигаться зигзагом в погоне или бегстве, быстро ускоряться и останавливаться.

Рис. 2. Трехмерная модель робота «Гепард»

Прототип робота «Гепард», способный развивать скорость от 30 до 50 км/ч, должен быть представлен в ближайшее время.

Информация о создании четырехногих шагающих роботов носит, в основном, описательный характер. Это обстоятельство настоятельно требует проведения дополнительных исследований, в том числе и в области создания исполнительных механизмов шагающих роботов, имеющих древовидную структуру.

Выбор биологического прототипа шагающего робота

В качестве биологического прототипа четырехногого шагающего робота выберем собаку — одно из первых животных, прирученных человеком. Интерес к собакам, как к прототипу конструкции робота, не случаен. Кинематическая схема (скелет) собаки отточена тысячелетиями естественного отбора и отлично подходит для быстрого передвижения. У всех пород собак на каждой лапе четыре опорных пальца с когтями, которые, в отличие от кошачьих, не втягиваются. На передней лапе с внутренней стороны находится пятый палец, называемый прибылым. У некоторых пород он расположен так высоко на лапе, что совершенно бесполезен, у других растет ниже и хорошо развит.

Невтягивающиеся когти непригодны для ближнего боя (как, например, у кошек), однако обеспечивают собакам хорошее сцепление с опорной поверхностью. Эта особенность в сочетании с сильно развитыми скакательными суставами задних ног обеспечивает мощное отталкивание собаки от поверхности и, как следствие, быстрый разгон и высокую скорость передвижения.

За биологический прототип «Робота-собаки» возьмем немецкую овчарку, которая отличается высоким интеллектом. Это обуславливает ее использование в различных областях деятельности (в качестве поводырей для слепых, для обнаружения взрывчатки и наркотиков, для спасения людей и пр.). Изображение скелета немецкой овчарки представлено на рис. 3. Кинематическая схема, отражающая основные сочленения скелета собаки и имеющая 89 степеней подвижности, приведена на рис. 4.

Рис. 3. Скелет немецкой овчарки

Рис. 4. Кинематическая схема «Робота-собаки»

Направленный граф достижимости звеньев исполнительного механизма, соответствующий

такой кинематической схеме, представлен на рис. 5.

Рис. 5. Направленный граф достижимости звеньев исполнительного механизма «Робота-собаки»

Сложность представленной кинематической схемы затрудняет последующий расчет и анализ уравнений динамики, ввиду большой размерности матриц, входящих в эти уравнения. Однако, необходимо отметить, что предложенная ранее и используемая в этой статье методика математического описания кинематики и динамики исполнительных механизмов роботов с древовидными кинематическими структурами позволяет исследовать такие структуры любой сложности [6, 7].

Рассмотрим упрощенную кинематическую схему механизма «Робота-собаки», имеющую 22 степени подвижности (включая 6 фиктивных) и представленную на рис. 6. Данной кинематической схеме соответствует направленный граф достижимости, приведенный на рис. 7.

Рис. 6. Упрощенная кинематическая схема механизма «Робота-собаки»

Рис. 7. Направленный граф достижимости упрощенной кинематической схемы механизма «Робота-собаки»

Уравнения динамики древовидного исполнительного механизма «Робота-собаки»

В соответствии с предложенной выше методикой [6—8] уравнения динамики исполнительного механизма «Робота-собаки» относительно обобщенных координат записываются в блочно-матричном виде:

$$A(q)\ddot{q} + B(q,\dot{q}) - C(q)f_{\rm B}^{0} - H(q)n_{\rm B}^{0} = \tau, \quad (1)$$

где \ddot{q} — вектор обобщенных координат исполнительного механизма; τ — вектор сил и моментов, развиваемых приводами робота; $f_{\rm B}^0, n_{\rm B}^0$ — блочные матрицы внешних сил и моментов, приложенных к звеньям со стороны окружающей среды;

 $A(q), B(q, \dot{q}), C(q)$ и H(q) — матричные коэффициенты, которые вычисляются в соответствии с приведенными ниже зависимостями:
$$\begin{split} &A(q) = \sigma({}^{0}z^{d})^{\mathrm{T}} \left(-(\Lambda({}^{0}c_{fD}))^{\mathrm{T}} m^{d} (D{}^{0}z^{d} (E-\sigma) + \\ &+\Lambda^{\mathrm{T}} ({}^{0}c_{fD}){}^{0}z^{d} \sigma) + D^{\mathrm{T}}{}^{0}J^{d} D{}^{0}z^{d} \sigma) + \\ &+(E-\sigma)({}^{0}z^{d})^{\mathrm{T}} D^{\mathrm{T}} m^{d} (D{}^{0}z^{d} (E-\sigma) + \\ &+\Lambda^{\mathrm{T}} ({}^{0}c_{fD}){}^{0}z^{d} \sigma); \\ &B(q,\dot{q}) = \sigma({}^{0}z^{d})^{\mathrm{T}} \{-(\Lambda({}^{0}c_{fD}))^{\mathrm{T}} m^{d} [\Lambda^{\mathrm{T}} ({}^{0}c_{fD})\Lambda^{\mathrm{T}} \times \\ &\times ({}^{0}z^{d} \sigma \dot{q}^{d}) (D-E) + \Lambda^{\mathrm{T}} (\Lambda^{\mathrm{T}} ({}^{0}c_{fD}) \sigma \dot{q}^{d} {}^{0}z^{d} D + \\ &+\Lambda^{\mathrm{T}} ({}^{0}c_{fD}) ((D-E)\sigma {}^{0}z^{d} \dot{q})^{d}) + 2D\Lambda^{\mathrm{T}} ({}^{0}z^{d} (E- \\ &-\sigma)\dot{q}^{d}) (D-E)] + D^{\mathrm{T}} {}^{0}J_{c}^{d} D\sigma \dot{q}^{d} \Lambda^{\mathrm{T}} ({}^{0}z^{d}) \times \\ &\times (D-E) + D^{\mathrm{T}} \Lambda (D{}^{0}z^{d} \sigma \dot{q})^{d-0}J_{c}^{d} D{}^{0}z^{d} \sigma \dot{q} + \\ &+ (E-\sigma)({}^{0}z^{d})^{\mathrm{T}} D^{\mathrm{T}} m^{d} [\Lambda^{\mathrm{T}} ({}^{0}c_{fD}) \Lambda^{\mathrm{T}} ({}^{0}z^{d} \sigma \dot{q}^{d}) \times \\ &\times (D-E) + 2D\Lambda^{\mathrm{T}} ({}^{0}z^{d} (E-\sigma) \dot{q}^{d}) (D-E) + \\ &+\Lambda^{\mathrm{T}} (\Lambda^{\mathrm{T}} ({}^{0}c_{fD}) \sigma \dot{q}^{d-0} z^{d} D + \Lambda^{\mathrm{T}} ({}^{0}c_{fD}) ((D-E) \times \\ &\times \sigma {}^{0}z^{d} \dot{q})^{d})] {}^{0}z^{d} \sigma \dot{q}; \end{split}$$

Окончание табл. 1

$$C(q) = \sigma({}^{0}z^{d})^{\mathrm{T}} ((D^{\mathrm{T}} - E)\Lambda({}^{0}s^{d})D^{\mathrm{T}} + D^{\mathrm{T}}\Lambda({}^{0}t^{d})) + (E - \sigma)({}^{0}z^{d})^{\mathrm{T}}D^{\mathrm{T}};$$
$$H(q) = \sigma({}^{0}z^{d})^{\mathrm{T}}D^{\mathrm{T}}.$$

Приведем описание некоторых параметров механизма, представленных в блочно-матричном виде.

Матрица *z*, определяющая направление осей вращения (или поступательного движения) связанных систем координат ИМ и их взаимное расположение, имеет вид

$${}^{0}z = ({}^{0}z_{1}, {}^{0}z_{2}, {}^{0}z_{3}, {}^{0}z_{4}, {}^{0}z_{5}, {}^{0}z_{6,1}, {}^{0}z_{7}, {}^{0}z_{8}, {}^{0}z_{9},$$

$${}^{0}z_{10}, {}^{0}z_{6,2}, {}^{0}z_{11}, {}^{0}z_{12}, {}^{0}z_{13}, {}^{0}z_{14}, {}^{0}z_{6,3}, {}^{0}z_{15}, {}^{0}z_{16},$$

$${}^{0}z_{17}, {}^{0}z_{18}, {}^{0}z_{6,4}, {}^{0}z_{19}, {}^{0}z_{20}, {}^{0}z_{21}, {}^{0}z_{22})^{\mathsf{T}}.$$

Матрица $\sigma^{d} = \text{diag}(\sigma_{1}, \sigma_{2}, ..., \sigma_{N})$ коэффициентов, определяющих тип сочленений звеньев ИМ, является единичной матрицей.

 $m = (m_1, m_2, ..., m_N)^{T}$ — матрица масс звеньев ИМ робота;

 $J_{C} = (J_{C_{1}}, J_{C_{2}}, ..., J_{C_{N}})^{\mathrm{T}}$ — блочная матрица тензоров инерции звеньев;

 ${}^{0}t^{\hat{d}} = \operatorname{diag}({}^{0}\bar{t}_{1}^{\mathsf{T}}, {}^{0}\bar{t}_{2}^{\mathsf{T}}, ..., {}^{0}\bar{t}_{N}^{\mathsf{T}})$ — блочная диагональная матрица векторов, соединяющих начала соответствующих систем координат звеньев-отцов с точками, через которые проходят равнодействующие внешних сил, приложенных к звеньям.

Параметры исполнительного механизма «Робота-собаки»

Для записи параметров исполнительного механизма робота воспользуемся широко применяемой в робототехнике системой координат Денавита-Хартенберга (Д-Х) [9—11].

Значения параметров основных и вспомогательных систем координат представлены в табл. 1 и 2.

Параметры Денавита-Хартенберга основных систем координат робота

- •										
Номер СК	θ, ра д	<i>d</i> , м	а, м	а, рад						
1	0	0	0	0						
2	0	0	0	0						

льного	Номер СК	θ, p
обаки»	6,2	0
олнительного	6,3	π/
и широко при- темой коорди-	6,4	π/
[9—11]. ых и вспомога- редставлены	В табл. нат центр звеньев.	3и4 оовм
Таблица 1 ювных систем	K	оордина

Ө, рад	<i>d</i> , м	а, м	α, рад
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	π/2
π/2	-0,17	0	π/2
3π/2	0	0	3π/2
π/2	0,35	0	3π/2
3π/2	0	0,35	0
π/2	0,17	0	π/2
3π/2	0	0	3π/2
π/2	0,35	0	3π/2
3π/2	0	0,35	0
0	-0,17	0	π/2
3π/2	0	0	3π/2
π/2	0,35	0	3π/2
3π/2	0	0,35	0
0	0,17	0	π/2
3π/2	0	0	3π/2
π/2	0,35	0	3π/2
3π/2	0	0,35	0
	θ, рад0000 $\pi/2$ $3\pi/2$ $\pi/2$ $3\pi/2$ $\pi/2$ $3\pi/2$ 0 $3\pi/2$ $\pi/2$ $3\pi/2$ 0 $3\pi/2$ 0 $3\pi/2$ 0 $3\pi/2$ $3\pi/2$ $3\pi/2$ $3\pi/2$	θ , рад d , м0000000000 $\pi/2$ -0,17 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0 $\pi/2$ 0,17 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0 0 -0,17 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0 0 0,17 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0 $\pi/2$ 0,35 $3\pi/2$ 0	θ , рад d , M a , M000000000000000 $\pi/2$ $-0,17$ 0 $3\pi/2$ 00 $\pi/2$ 0,350 $3\pi/2$ 00,35 $\pi/2$ 0,170 $3\pi/2$ 00,35 $3\pi/2$ 00,350 $-0,17$ 0 $3\pi/2$ 00,3500,350 $3\pi/2$ 00,3500,170 $3\pi/2$ 00

Таблица 2

Параметры Денавита-Хартенберга вспомогательных систем координат робота

Номер СК	θ, ра д	<i>d</i> , м	а, м	а , ра д
6,2	0	0	0	0
6,3	π/2	0	-1,0	0
6,4	π/2	0	-1,0	0

В табл. 3 и 4 представлены значения координат центров масс, массы и моменты инерции звеньев.

Таблица З

Координаты центров масс звеньев робота

Номер звена	Хс, м	<i>Yc</i> , м	<i>Zc</i> , м
1	0	0	0
2	0	0	0
3	0	0	0

Номер звена	Хс, м	<i>Yc</i> , м	<i>Zc</i> , м
4	0	0	0
5	0	0	0
6	0	0	-0,5
7	0	0	-0,085
8	0,175	0	0
9	0.	0	0,175
10	0,175	0	0
11	0	0	0,085
12	0,175	0	0
13	0.	0	0,175
14	0,175	0	0
15	0	0	-0,085
16	0,175	0	0
17	0.	0	0,175
18	0,175	0	0
19	0	0	0,085
20	0,175	0	0
21	0.	0	0,175
22	0,175	0	0

Окончание табл. 3

Таблица 4

 $D_{22 \times 22} =$

																						_	
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
_	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	
	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	

Программные средства для исследования исполнительного механизма «Робота-собаки»

Моделирование проводилось в среде Matlab с помощью специально разработанного набора процедур, записанных в виде m-файлов. Достоинством этого набора процедур является то, что он применим для исследования древовидных исполнительных механизмов роботов с произвольной KC.

Особенность конкретной КС отражается в содержании пускового файла, где находится информация о параметрах Денавита-Хантенберга, массах, моментах инерции координат центров масс и др.

Задачей моделирования исполнительного механизма «Робота-собаки» являлось вычисление τ — вектор-столбца сил или моментов, развиваемых приводами робота, а также вычисление элементов матриц A(q), $B(q,\dot{q})$, C(q) и H(q), входящих в уравнения динамики робота.

Массы	И	моменты	инершии	звеньев	робота

Номер звена	<i>J</i> х, кг/м ²	<i>Ју</i> , кг/м ²	<i>J</i> z, кг/м ²	т, кг
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	7,5	7,5	0	30
7, 11, 15, 19	0,01445	0,01445	0	2
8, 12, 16, 20	0,06125	0,06125	0	2
9, 13, 17, 21	0	0,06125	0,06125	2
10, 14, 18, 22	0,06125	0	0,06125	2

Матрица достижимости для кинематической схемы «Робота-собаки» имеет следующий вид: Матрица A(q) вычислялась в начальном положении робота, а остальные матрицы — при повороте шарниров 7, 11, 15 и 19 на угол 45°.

Полученные численные значения элементов матриц $A(q) - (22 \times 22), B(q, \dot{q}) - (22x1), C(q) - (22 \times 22)$ и $H(q) - (22 \times 22)$ могут быть использованы для дальнейшего исследования.

Звенья кинематической схемы робота 7, 8, 9, 10 поочередно нагружались массой от 1 до 10 кг и определялись значения моментов $M_{7\text{max}}$ [H·м], $M_{8\text{max}}$ [H·м], $M_{9\text{max}}$ [H·м], $M_{10\text{max}}$ [H·м] и эффективной мощности $N_{7\text{max}}$ [BT], $N_{8\text{max}}$ [BT], $N_{9\text{max}}$ [BT], $N_{10\text{max}}$ [BT] в этих степенях подвижности.

Результаты расчетов представлены в табл. 5.

Программа Matlab также позволяет оценить степени взаимного влияния приводов друг на друга при их совместной работе.

Выводы

При выборе кинематических структур шагающих роботов целесообразно использовать их биологические прототипы.

Предложенные КС, уравнения динамики исполнительного механизма «Робота — собаки» и программы моделирования позволяют вычислить моменты и мощности в степенях подвижности робота, а также значения элементов матриц A(q), $B(q,\dot{q})$, C(q) и H(q), входящих в уравнение динамики.

Литература

1. Белецкий В.В. Двуногая ходьба. М.: Наука, 1984. 287 с.

2. Вукобратович М. Шагающие роботы и антропоморфные механизмы. М.: Мир, 1976. 541 с.

3. Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984. 312 с.

4. http://ru.wikipedia.org/wini/BigDog.

5. http://rnd.cnews.ru/tech/news/line/index.

6. Семенов С.Е., Ковальчук А.К., Кулаков Д.Б. Математическое моделирование механизмов с древовидной кинематической структурой // Наука и образование. Электронное научно-техническое издание. 2010. № 2. С. 34—41.

7. Ковальчук А.К., Кулаков Д.Б., Семенов С.Е. Блочно-матричные уравнения движения исполнительных механизмов роботов с древовидной кинематической структурой // Изв. вузов. Машиностроение. 2008. № 12. С. 5–21.

8. Ковальчук А.К., Кулаков Д.Б., Семенов С.Е. Управление исполнительными системами двуногих шагающих роботов. Теория и алгоритмы / Под ред. А.К.Ковальчука // Двуногие шагающие роботы. М.: Изд-во МГОУ, 2007. 160 с.

9. Зенкевич С.Л., Ющенко А.С. Основы управления манипуляционными роботами. М.: Изд-во МГТУ им. Н.Э.Баумана, 2004. 480 с.

10. Медведев В.С., Лесков А.Г., Ющенко А.С. Системы управления манипуляционных роботов. М.: Наука, 1978. 416 с.

11. Попов Е.П., Верещагин А.Ф., Зенкевич С.Л. Манипуляционные роботы: динамика и алгоритмы. М.: Наука, 1978. 416 с.

Статья поступила 30.06.2011 г.

Таблица 5

М, кг	<i>М</i> ₇ , Н∙м	<i>N</i> ₇ , Вт	<i>М</i> ₈ , Н∙м	N ₈ , Вт	М9, Н∙м	<i>N</i> 9, Вт	<i>М</i> ₁₀ , Н∙м	N ₁₀ , Вт
0	-31,743	-45,791	31,631	-47,179	-0,71218	-0,87861	10,301	25,415
1	-43,294	-62,871	43,182	-64,327	-0,71218	-0,87861	15,451	38,123
2	-54,845	-79,951	54,733	-81,475	-0,71218	-0,87861	20,601	50,831
3	-66,396	-97,031	66,284	-98,623	-0,71218	-0,87861	25,751	63,539
4	-77,948	—114,11	77,836	—115,77	-0,71218	-0,87861	30,901	76,246
5	-89,499	-131,19	89,387	-132,92	-0,71218	-0,87861	36,052	88,954
6	-101,05	-148,27	100,94	-150,07	-0,71218	-0,87861	41,202	101,66
7	—112,6	-165,35	112,49	-167,22	-0,71218	-0,87861	46,352	114,37
8	-124,15	-182,49	124,04	-184,36	-0,71218	-0,87861	51,502	127,08
9	-135,7	-199,64	135,59	-201,51	-0,71218	-0,87861	56,653	139,79
10	-147,25	-216,78	147,14	-218,66	-0,71218	-0,87861	61,803	152,49

Моменты и мощности при раздельной работе приводов