УДК 629.1.03

ЛЕОНАРД Александр Валерьевич аспирант кафедры «Теоретическая механика» (Волгоградский государственный технический университет)

Цикловой механизм шагания с направляющей

А.В. Леонард

Представлен цикловой шагающий механизм с направляющей. Предложены критерии оценки цикловых шагающих механизмов, обоснована энергетическая эффективность цикловых шагающих механизмов с прямолинейной опорной фазой. Приведен сравнительный анализ синтезированного механизма с механизмом Чебышева—Умнова, применяемого в шагающей машине «Восьминог». Описана действующая лабораторная модель синтезированного циклового шагающего механизма с направляющей.

Ключевые слова: шагающий механизм, оптимизационный синтез механизма, теоретическая механика, силовой анализ механизма, энергетическая эффективность.

The article presents a cyclic walking mechanism with a guide. The estimation criteria of cyclic walking mechanisms have been offered. The power efficiency of cyclic walking mechanisms with a rectilinear reference phase has been proved. The comparative analysis of the synthesized mechanism and the Tchebyshev-Umnov one, employed in the «Vosminog» walking machine, has been carried out. The laboratory-scale working model of the synthesized cyclic walking mechanism with a guide has been created.

Keywords: walking mechanism, mechanism optimization synthesis, theoretical mechanics, power analysis of mechanism, power efficiency.

Подвижные робототехнические комплексы предназначены для перемещения и выполнения технологических операций в различных эксплуатационных условиях. Когда преодолеваемые препятствия соизмеримы с размерами комплекса, невозможно применение традиционных движителей. Поэтому важным направлением является исследование новых типов движителей и, в частности, шагающих [1, 2].

Из всего многообразия существующих шагающих движителей простотой управления выделяется класс цикловых шагающих механизмов [3]. Однако многозвенные шагающие механизмы с одной степенью свободы и кинематическим парами V-го класса реализуют фиксированную траекторию «опорного» звена. Отсутствие прямолинейного участка у относительной траектории стопы, соответствующего опорной фазе механизма, приводит к периодическим вертикальным перемещениям корпуса шагающей машины, и как следствие, к повышенным энергетическим затратам [4, 5].

Прямолинейность опорного участка относительной траектории стопы в цикловом шагающем механизме достигается путем заме-

ны в механизме Чебышева — Умнова [6] коромысла на криволинейную направляющую 5, по которой перемещается ролик 4, связанный с шатуном 2 (рис. 1) [7].

В результате оптимизационного синтеза был получен цикловой шагающий механизм с направляющей (см. рис. 1), имеющий следующие параметры: r = 0,264 м; $\rho_1 = 0,608$ м; $\rho_3 = 0,706$ м; $\gamma = 1,066$, где r — длина кривошипа; ρ_1 — длина стержня AB; ρ_3 — длина стержня AC; γ — угол между стержнями AB и AC шатуна ABC [8].

Энергетическая эффективность циклового шагающего механизма с направляющей

Оценка энергетической эффективности механизма осуществляется в соответствии с выражением [9]

$$\frac{A_1(S)}{A_2(S)} = \frac{1}{k} \left(1 + \frac{2\Delta}{h} \right),\tag{1}$$

где $A_1(S)$ — работа, затрачиваемая на подъем центра масс корпуса машины и упругую деформацию грунта за путь *S* при использовании

Рис. 1. Цикловой шагающий механизм с направляющей:

I — кривошип; 2 — шатун; 3 — стопа; 4 — ролик; 5 — направляющая циклового механизма Чебышева — Умнова; $A_2(S)$ — работа, затрачиваемая на подъем центра масс корпуса машины и упругую деформацию грунта за путь S при использовании механизма с направляющей; $k = L_1 / L_2$, L_1 длина шага циклового механизма, L_2 — длина шага механизма с направляющей (оба механизма рассматриваются в одном масштабе), Δ высота подъема центра масс корпуса робототехнического комплекса (с движителями на базе циклового механизма Чебышева — Умнова) в процессе его движения; h — глубина прессования грунта под стопами шагающей машины. Принимается, что грунт упругий.

Согласно формуле (1) и рис. 2 в диапазоне [0, $h_{\rm kp}$] энергетически выгодней использовать цикловой шагающий механизм с направляющей, а в диапазоне $[h_{\rm kp}, H]$ — цикловой механизм Чебышева — Умнова, где $h_{\rm kp}$ — глубина продавливания грунта под стопами робототехнической системы, при которой $A_1 = A_2$, H — граничная величина глубины продавливания грунта.

Сохранить глубину продавливания грунта в пределах от 0 до $h_{\rm kp}$ можно за счет увеличения площади опорных поверхностей стоп, что значительно расширяет область применения шагающих механизмов с направляющей, как более энергоэффективных по сравнению с механизмом Чебышева — Умнова, применяемому в шагающей машине «Восьминог». При k = 1, что соответствует $L_1 = L_2$, энергозатраты циклового шагающего механизма без прямолинейного опорного участка больше энергозатрат циклового шагающего механизма с направляющей для всех значений h. Для синтезированного механизма с направляющей $h_{\rm kp}$ $_{k=2,8} = 0,062$ м.

Рис. 2. Энергоэффективность сравниваемых механизмов

Сравнительный анализ циклового шагающего механизма с направляющей и механизма Чебышева — Умнова, применяемого в шагающей машине «Восьминог»

Известны различные критерии качества шагающих машин и движителей [10, 11]. Наиболее значимые сравниваемые характеристики двух механизмов представлены в таблице. Оба механизма рассмотрены в одном масштабе.

Звездочкой отмечены параметры, которые удалось улучшить в результате синтеза циклового шагающего механизма с направляющей.

Лабораторная модель

На основе математической модели циклового шагающего механизма была создана действующая лабораторная модель в масштабе 1:2 (рис. 3). Экспериментально полученная кривая незначительно отличается от теоретической относительной траектории точки *C* стопы $(L_{\text{теор}} / L_{\text{эксп}} = 0,96; H_{\text{теор}} / H_{\text{эксп}} = 0,99)$. Параметры лабораторной модели: $M_{\text{кор}} = 13,37$ кг; $m_1 = 0,16854$ кг; $m_4 = 0,316$ кг; $m_5 = 0,316$ кг; $m_3 = 0,2$ кг; r = 0,1316 м; $r_1 = 0,3048$ м; $a_2 =$ = 0,171 м; $r_3 = 0,353$ м; b = -0,41 м; $a_1 = -1,34$; *Таблица*

Номер	Критерий оценки	Механизм Чебышева — Умнова	Механизм с направляющей
1	L / r — относительная длина шага механизма	2,87	1,06
2	<i>H</i> / <i>r</i> — относительная высота подъема стопы в процессе движения	0,434	1,61*
3	<i>В / r</i> — относительный клиренс шагающей машины	0,75	2,16*
4	Δ / r — относительная высота подъема центра масс корпуса робототехнического комплекса	0,21	0*
5	$L_{\rm r}$ / r — относительный горизонтальный габаритный размер частей механизма, расположенных на корпусе механизма, в процессе его работы	2,84	4,44
6	$H_{\rm r_{-}}/r$ — относительный вертикальный габаритный размер частей механизма, расположенных на корпусе механизма, в процессе его работы	3,56	2*
7	<i>М / m</i> ₁ — относительная неуравновешенная масса подвижных частей механизма (без учета массы стопы и с одинаковой плотностью распределения массы по всем звеньям);	7,94	5,57*
	 ω — угловая скорость кривошипа 	$\omega = \text{const} (\omega = 1 \text{ pag} / \text{c})$	
8	V _{max} / V _{min} — неравномерность горизонтальной скорости движения робототехнического комплекса	3,33	2,87*
9	$2\pi V_{\rm max}$ / (ωr) — относительная максимальная скорость стопы в опорной фазе	7,03	11,25
10	$\pi^{2} \left(\frac{d^{2}x}{d\alpha^{2}} \right)_{x_{\text{и.м.ш}}}^{\text{max}} / (4r)$ — относительная передаточная функция для центра	5,52	7,36
	масс шатуна, где x — координата центра масс; α — угол порота кривошипа		
11	$\pi^{2} \left(\frac{d^{2}x}{d\alpha^{2}} \right)_{x_{\text{ILM,c}}}^{\text{max}} / (4r)$ — относительная передаточная функция для центра масс	9,20	16,56
12	$M_{\max}^{*} / (Qr)$ — относительный максимальный момент на оси кривошипа, реализующий квазистатический режим перемещения, при действии силы сопротивления Q , приложенной к корпусу механизма и равной по модулю силе сцепления стопы с опорной поверхностью	1,16	1,93
13	$(\alpha_1 - \alpha_2)/(2\pi)$ — коэффициент режима, где α_1 и α_2 — угловые координаты кривошипа, соответствующие началу и концу опорной фазы $C_1 - C_2$ (см. рис. 1)	0,5	0,135
14	ρ_{\min} / r — относительный минимальный радиус кривизны траектории точки <i>B</i> (см. рис. 1)	2,31	0,246

Сравнительный анализ механизмов

Рис. 3. Лабораторная модель циклового шагающего механизма с направляющей: *1* — кривошип; *2* — несущая рама; *3* — аккумулятор; *4* — опорные катки; *5* — двигатель постоянного тока; *6* — шарикоподшипник; *7* — направляющая; *8* — шатун; *9* — сменная стопа

 $a_2 = -2,18; d = 0,01$ м; g = 1,066, где $M_{\text{кор}}$ — масса корпуса; m_1 — масса кривошипа; m_4 — масса стержня $AB; m_5$ — масса поперечной балки, образующей шатун; $m_3 = 0,2$ — масса стопы; a_2 расстояние между точкой A и точкой крепления поперечной балки; d — диаметр шарниров.

Процесс работы синтезированного циклового механизма с направляющей представлен на рис. 4.

Выводы

Таким образом, синтезированный шагающий механизм с направляющей, реализующий прямолинейную опорную фазу, является энергоэффективным по сравнению с механизмом Чебышева — Умнова, при прочих равных условиях.

Представленные критерии позволяют проводить качественную оценку свойств

Рис. 4. Цикл работы синтезированного шагающего механизма с направляющей

Рис. 5. Лабораторная модель циклового шагающего движителя: 1 — шагающий движитель; 2 — поддерживающая рама

синтезируемого циклового шагающего механизма.

Добиться отсутствия неравномерности горизонтальной скорости движения у робототехнического комплекса (порождающей горизонтальные инерционные нагрузки) можно при помощи соответствующего управления двигателями, приводящими в движение пару механизмов, образующих движитель (рис. 5).

Литература

1. Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984. 310 с.

2. *Брискин Е.С.* Об общей динамике и повороте шагающих машин // Проблемы машиностроения и надежности машин. 1997. № 6. С. 33–39.

3. Концепция проектирования, динамика и управление движением шагающих машин. Ч. 1. Концепция проектирования / Е.С. Брискин, В.В. Чернышев, В.В. Жога и др. // Мехатроника, автоматизация, управление. 2005. № 5. С. 22–27.

4. Пат. 2009936 РФ, МПК В 62 D 57/032. Шагающий движитель / В.С. Богатырев. 1994.

5. Пат. 2009938 РФ, МПК В 62 D 57/032. Шагающий движитель транспортного средства / В.С. Богатырев. 1994.

6. Шагающая машина «Восьминог» / Е.С. Брискин, В.В. Чернышев, А.В. Малолетов и др. // Мехатроника, автоматизация, управление. 2004. № 5. С. 48—49.

7. Заявка № 2010109132 РФ, МПК В 62 D 57/032. Шагающая опора для многоопорных самоходных машин и для транспортных средств повышенной проходимости / А.В. Леонард, Е.С. Брискин; заявитель ВолгГТУ; заявл. 11.03.2010. [Положительное решение РОСПАТЕНТ от 03.02.2011]

8. Брискин Е.С., Леонард А.В., Малолетов А.В. Синтез циклового шагающего механизма с направляющей и критерии его оценки // Теория механизмов и машин. 2011. № 1(17). Т. 9. С. 14—24.

9. Концепция проектирования, динамика и управление движением шагающих машин. Ч. 2. Динамика движения шагающих машин серии «Восьминог» / Е.С. Брискин, В.В. Чернышев, В.В. Жога и др. // Мехатроника, автоматизация, управление. 2005. № 6. С. 19—26.

10. Вульфсон И.И. Динамические расчеты цикловых механизмов. Л.: Машиностроение, 1976. 328 с.

11. *Жога В.В.* Система показателей качества шагающих транспортных машин // Справочник. Инженерный журнал. 1997. № 5. С. 52—54.

Статья поступила в редакцию 22.09.2011