УДК 621.833.6

тимофеев Геннадий Алексеевич профессор, доктор технических наук

САЩЕНКО Денис Владимирович старший преподаватель кафедры «Теория механизмов и машин» (МГТУ им. Н.Э. Баумана) e-mail: timga@bmstu.ru

Геометрия эвольвентных самотормозящихся инверсных передач внешнего зацепления

Г.А. Тимофеев, Д.В. Сащенко

Рассмотрена геометрия эвольвентных самотормозящихся инверсных передач внешнего зацепления. Инверсное зацепление применяется для получения нужного направления вращения выходного вала самотормозящейся передачи, позволяя в некоторых случаях обойтись без промежуточных зубчатых колес.

Ключевые слова: электромеханический привод, самоторможение, инверсные передачи, внешнее эвольвентное зацепление, профиль зуба.

Geometry of self-braking inverse external involute gears

G.A. Timofeyev, D.V. Sashchenko

The article considers the geometry of a self-braking inverse involute gears of external enagement. The inverse mesh can be used to obtain the desired direction of rotation for the output shaft self-locking transmission, allowing in some cases to avoid the use of intermediate gears.

Keywords: electro-mechanical drive, self-braking, inverse transmission, external involute gearing, tooth profile.

Многие электромеханические приводы (особенно в подъемно-транспортных машинах) требуют жесткого фиксирования выходного звена в заданном положении и исключения его самопроизвольного движения под действием нагрузки. Для этого привод обычно оснащают тормозом. Однако во многих случаях можно обойтись и без специального тормозного устройства, если включить в состав привода самотормозящийся зубчатый механизм, который совмещает функции передачи движения и автоматического торможения привода после выключения двигателя. Такое решение позволяет получить простую и компактную конструкцию и снизить стоимость привода за счет устранения или существенного уменьшения тормоза. Таким образом, самотормозящиеся зубчатые механизмы, пропускающие поток энергии только в одном направлении, играют ту же роль, что клапаны или мембраны в механике или диоды в радиотехнике.

Количество изобретенных самотормозящихся механизмов к настоящему времени достигло уже того уровня, что стал актуальным вопрос об общем методе изучения явления самоторможения, позволяющим для любого механизма указать ту область в которой он является самотормозящимся. Кроме этого требуются и новые технические решения, создание и научное обоснование которых — актуальная задача машиноведения.

Принятая классификация зубчатых зацеплений к внешним относит такие зацепления, у которых аксоидные поверхности зубчатых колес касаются внешним образом [1] или такие, в которых оба колеса имеют внешние зубья [2, 3]. К внутренним зацеплениям традиционная классификация относит зацепления с аксоидами, касающимися внутренним образом, или такие, в которых одно колесо имеет внешние зубья, а другое — внутренние. Зубчатые зацепления, соответствующие принятой терминологии, имеют один общий признак: полюс зацепления и само зацепление находятся по одну сторону от оси шестерни.

Существуют косозубые зацепления [4, 5], в которых полюс зацепления и само зацепление находятся по разные стороны от оси шестерни. В этом случае передаточное отношение имеет противоположный знак по сравнению с обычным зацеплением и называется инверсным [5]. Передаточное отношение обычного внешнего эвольвентного зацепления отрицательно, а внешнего инверсного — положительно; обычного внутреннего — положительно, а инверсного внутреннего — отрицательно.

Схема эвольвентного инверсного зацепления колес с внешними зубьями при одинаковых направлениях их наклона показана на рис. 1. Это зацепление обладает свойствами как внутреннего так и внешнего. Как у внутреннего зацепления, аксоидные поверхности касаются одна другой внутренним образом, передаточное отношение положительно, полюс зацепления P расположен вне отрезка O_1O_2 , соединяющего центры вращения колес, разность начальных радиусов равна межосевому расстоянию, скорость скольжения профилей в точке контакта определяется зависимостью [5]

$$V_{\rm c\kappa} = l_{\rm \kappa p} \left(\omega_1 - \omega_2 \right), \tag{1}$$

где $l_{\rm kp}$ — расстояние от полюса зацепления до точки контакта.

Вместе с тем, в зацеплении нет колеса с внутренними зубьями, а скорость скольжения хоть и пропорциональна разности угловых

Рис. 1. Схема внешнего эвольвентного инверсного зацепления при одинаковых направлениях наклона зубьев

скоростей, однако из-за большого расстояния $l_{\rm kp}$, имеет большое значение, что внутреннему зацеплению не свойственно.

Найдем основные зависимости, определяющие параметры внешнего инверсного зацепления, представленного на рис. 1. Определим в первую очередь угол зацепления α_{nv} , используя для этого уравнения, выражающие торцовые толщины сопряженных зубьев на начальных окружностях. Для шестерни эта толщина S_{nv_1} определяется по обычной формуле для внешних зубьев [2, 3]:

$$S_{tw_1} = d_{w_1} \left(\frac{\pi}{2z_1} + \frac{2x_1 \operatorname{tg}\alpha}{z_1} + \operatorname{inv}\alpha_t - \operatorname{inv}\alpha_{tw} \right), \quad (2)$$

где α_t — угол профиля в торцевом сечении.

Основная геометрическая особенность колеса 2, изображенного на рис. 1, заключается в том, что его делительный диаметр много больше диаметра вершин. Толщину S_{iw_2} такого колеса найдем из схемы, приведенной на рис. 2. На этой схеме видно, что искомая толщина зуба колеса 2 является мнимой, поэтому дополним зацепление, представленное на рис. 1, еще одним колесом 2', использующим тот же делительный диаметр, что и колесо 2. Внутренние зубья колеса 2' образованы теми же эвольвентами, что и колеса 2 (рис. 3). Очевидно, что зацепление шестерни 1 и колеса 2', изображенного на рис. 3, имеет такой же угол зацепления и такое же передаточное отношение, как и зацепление этой шестерни с колесом 2. Толщину зуба колеса 2' рассчитывают по формуле

$$S_{tw_{2}} = d_{w_{2}} \left(\frac{\pi}{2z_{2}} + \frac{2x'_{2} \operatorname{tg}\alpha}{z_{2}} + \operatorname{inv}\alpha_{t} - \operatorname{inv}\alpha_{tw} \right), \quad (3)$$

где x'_2 — коэффициент относительного смещения колеса 2'.

Из уравнений (2) и (3) определим угол зацепления:

Рис. 2. Схема толщины зуба по делительной и произвольным окружностям

$$\operatorname{inv}_{a_{tw}} = \operatorname{inv}_{a_{t}} + \frac{2(x'_{2} - x_{1})\operatorname{tg}_{\alpha}}{z_{2} - z_{1}}.$$
 (4)

Зависимость между коэффициентами относительных смещений этих колес x_2 и x'_2 запишется так:

$$x_2 = x'_2 - \frac{z_1}{\cos\beta}.$$

Зацепление колес 1 и 2' отличается только размерами колеса 2. Найдем такой коэффициент смещения колеса 2, при котором будут выполняться следующие соотношения [3]:

$$d_{a_2} = 2a_w - d_{f_1} - 2c^*m;$$

$$d_{f_2} = 2a_w - d_{a_1} - 2c^*m,$$

где $d_{a_{1,2}}$, $d_{f_{1,2}}$ — соответственно диаметры окружностей вершин и впадин колес 1 и 2; c^* коэффициент радиального зазора; $c_t^* m_t = c^* m$; m — модуль зацепления.

Выразив входящие в формулы d_{a_2} и d_{f_2} величины через параметры исходного контура, получим соотношение

$$x_{2} = 2h_{a}^{*} - x_{1} - \frac{z_{2}}{2\cos\beta} \left(1 - \frac{\cos\alpha_{t}}{\cos\alpha_{tw}}\right) - \frac{z_{1}}{2\cos\beta} \left(1 + \frac{\cos\alpha_{t}}{\cos\alpha_{tw}}\right) + \Delta y, \qquad (5)$$

где $x_{1,2}$ — коэффициенты смещения колес 1 и 2; h_a^* — коэффициент высоты головки зуба; β — делительный угол наклона зуба; Δy — коэффициент уравнительного смещения.

С учетом уравнения (5) формула для определения угла зацепления примет вид

$$\operatorname{inv}\alpha_{tw} = \operatorname{inv}\alpha_{t} + \frac{2[z_1 - (x_1 - x_2)\cos\beta]\operatorname{tg}\alpha}{(z_2 - z_1)\cos\beta}.$$
 (6)

Определим радиусы начальных окружностей r_{w_1} и r_{w_2} и межосевое расстояние a_w передачи:

$$r_{w_1} = \frac{m_t z_1}{2} \frac{\cos \alpha_t}{\cos \alpha_{tw}}; \tag{7}$$

$$r_{w_2} = \frac{m_t z_2}{2} \frac{\cos \alpha_t}{\cos \alpha_{tw}}; \tag{8}$$

2012. Nº 11

$$a_{w} = \frac{(z_{2} - z_{1})m}{2\cos\beta} \frac{\cos\alpha_{t}}{\cos\alpha_{tw}}.$$
 (9)

Торцовая толщина зуба s_{ty_2} колеса 2 (см. рис. 2) может быть определена по следующей формуле:

$$s_{ty_2} = d_{y_2} \psi_{y_2},$$

где ψ_{y_2} — центральный угол, соответствующий половине толщины s_{ty_2} ,

$$\Psi_{y_2} = \operatorname{inv}\alpha_t - \operatorname{inv}\alpha_{ty_2} - \Psi_2. \tag{10}$$

Здесь ψ_2 — центральный угол, соответствующий половине толщины зуба по делительной окружности.

Значение ψ_2 определяют по формуле [3]

$$\Psi_2 = \frac{s_{t_2}}{d_2} = \frac{\pi}{2z_2} - \frac{2x_2 \text{tg}\alpha}{z_2}.$$
(11)

Подставив значения ψ_2 и ψ_{y_2} в уравнение для s_{ty_2} , получим

$$S_{iy_2} = d_{y_2} \left(inv\alpha_t - inv\alpha_{iy_2} - \frac{\pi}{2z_2} + \frac{2x_2 tg\alpha}{z_2} \right).$$
(12)

Для определения коэффициента торцевого перекрытия ε_{α} , выразим длину активного участка B_1B_2 (см. рис. 1) следующим образом:

$$B_1 B_2 = N_1 B_2 + N_2 B_1 - P N_2 + P N_1.$$

Учитывая, что

$$N_{1}B_{2} = r_{b_{1}} \operatorname{tga}_{ta_{1}}; \ N_{2}B_{1} = r_{b_{2}} \operatorname{tga}_{ta_{2}};$$
$$PN_{1} = r_{b_{1}} \operatorname{tga}_{tw}; \ PN_{2} = r_{b_{2}} \operatorname{tga}_{tw},$$

получим

$$B_1 B_2 = r_{b_1} \left(\operatorname{tg} \alpha_{ta_1} + \operatorname{tg} \alpha_{tw} \right) - -r_{b_2} \left(\operatorname{tg} \alpha_{tw} - \operatorname{tg} \alpha_{ta_2} \right)$$
(13)

и коэффициент торцевого перекрытия

$$\varepsilon_{\alpha} = \frac{B_1 B_2}{p_b} = \frac{1}{2\pi} \Big[z_1 \Big(\operatorname{tg} \alpha_{tw} + \operatorname{tg} \alpha_{ta_1} \Big) - \\ - z_2 \Big(\operatorname{tg} \alpha_{tw} - \operatorname{tg} \alpha_{ta_2} \Big) \Big], \qquad (14)$$

где p_b — шаг по основной окружности.

Рис. 3. Основное и дополнительное зацепления инверсной передачи с внешними зубьями при одинаковых направлениях наклона зубьев

Следует отметить, что выражение (14) для коэффициента торцового перекрытия не соответствует ни внешнему, ни внутреннему зацеплениям [2, 3] и составляет лишь небольшую часть полного коэффициента перекрытия. Для исключения кромочного контакта в зацеплении необходимо выполнение условия, вытекающего из (14):

$$\frac{\operatorname{tga}_{nv} + \operatorname{tga}_{ia_1}}{\operatorname{tga}_{nv} - \operatorname{tga}_{ia_2}} > \frac{z_2}{z_1}.$$
(15)

Основная часть коэффициента перекрытия в инверсных передачах приходится на его осевую составляющую ε_{β} , при расчете которой следует исключить проекцию на торцовую плоскость той части зуба, на которой он имеет неполную толщину (отрезок *BB*' на рис. 4, равный s_{c_1} tg β_{c_1} sin β_{c_1} , где s_{c_1} — нормальная толщина зуба на цилиндре радиуса r_{c_1}) во избежание перегрузки этой части. Без учета срезанной части зуба

Рис. 4. Развертка сечения боковой поверхности зубьев цилиндра радиусом *r*_{c1}

$$\varepsilon_{\beta} = \frac{\operatorname{tg}\beta_{c_1}}{p_{c_1}} \Big(b_w - s_{c_1} \sin\beta_{c_1} \Big), \quad (16)$$

где b_w — рабочая ширина зубчатого венца; p_{c_1} — шаг на окружности r_{c_1} ,

$$p_{c_1} = \pi m \frac{d_{c_1}}{d_1}.$$
 (17)

При заданном $\varepsilon_{\scriptscriptstyle\beta}$ значение $b_{\scriptscriptstyle w}$ определяют по формуле

$$b_{w} = \frac{\varepsilon_{\beta} \pi m d_{c_{1}}}{\mathrm{tg}\beta_{c_{1}} d_{1}} + s_{c_{1}} \sin\beta_{c_{1}}, \qquad (18)$$

где $r_{c_1} = \frac{d_{c_1}}{2} = a_w - r_{a_2}$.

При шевронном исполнении передачи условие $\varepsilon_{\beta} > 1$ должно выполняться для каждого полушеврона.

Самоторможение колес 1 и 2 (см. рис. 1) обеспечивается при выполнении следующих условий [7, 8]:

$$tg\beta_{y_{1}} > \sqrt{\frac{\cos^{2}\gamma}{f_{\min}^{2}} + ctg^{2}\gamma};$$

$$tg\beta_{y_{2}} < \sqrt{\frac{\cos^{2}\gamma}{f_{\max}^{2}} + ctg^{2}\gamma},$$
 (19)

где f_{\min} , f_{\max} — минимальное и максимальное значение коэффициента трения; β_{y_1} и β_{y_2} углы наклона зубьев колес 1 и 2 на соосных цилиндрах произвольных радиусов r_{y_1} и r_{y_2} ; γ угол между нормалью к боковой поверхности зуба и осью вращения, связанной с углом α и углом β наклона зуба на делительной окружности соотношением

$$\cos\gamma = \cos\alpha\sin\beta. \tag{20}$$

В процессе перемещения контактной точки *К* по активному участку B_1B_2 линии зацепления (см. рис. 1) углы наклона зубьев β_{y_1} и β_{y_2} на окружностях, проходящих через точку *K*, изменяются прямо пропорционально радиусам этих окружностей [2]. Угол β_{y_1} в точке B_1 принимает наименьшее значение, а угол β_{y_2} — наибольшее. Это означает, что если условия (19) выполняются в точке B_1 , то они тем более выполняются во всех остальных точках активного участка линии зацепления. Поэтому примем

$$tg\beta_{p_{1}} = \sqrt{\left(\frac{\cos^{2}\gamma}{f_{\min}^{2}}\right) + ctg^{2}\gamma};$$

$$tg\beta_{a_{2}} = \sqrt{\left(\frac{\cos^{2}\gamma}{f_{\max}^{2}}\right) + ctg^{2}\gamma},$$
 (21)

где β_{p_1} и β_{a_2} — углы наклона зубьев колес 1 и 2 на окружностях радиусов r_{p_1} и r_{a_2} , проходящих через точку B_1 .

Для того чтобы найти значение угла β запишем отмеченную в работе [2] зависимость между углами наклона зубьев и соответствующими радиусами:

$$\frac{\mathrm{tg}\beta_{p_1}}{\mathrm{tg}\beta} = \frac{r_{p_1}}{r_1}; \ \frac{\mathrm{tg}\beta_{a_2}}{\mathrm{tg}\beta} = \frac{r_{a_2}}{r_1}, \tag{22}$$

где $r_{1,2} = \frac{m_t z_{1,2}}{2}$ — радиусы делительных окружностей колес 1 и 2.

Радиус нижней точки активного профиля определяется по формуле [2]

$$r_{p_1} = \sqrt{\left(a_w \sin \alpha_{tw} - \sqrt{r_{a_2}^2 - r_{b_2}^2}\right)^2 + r_{b_1}^2}, \quad (23)$$

где a_w — межосевое расстояние зубчатой передачи; α_{tw} — угол зацепления передачи в торцовой плоскости; $r_{b_{1,2}} = r_{1,2} \cos \alpha_t$ — радиусы основных окружностей колес 1 и 2.

Радиус r_{a_2} окружности вершин второго колеса

$$r_{a_2} = m_t \left(\frac{z_2}{2} + h_{ta}^* + x_{t_2} - \Delta y_t \right), \qquad (24)$$

где m_t — торцовый модуль; x_{t_2} — коэффициент смещения колеса 2 в торцовой плоскости; Δy_t — коэффициент уравнительного смещения в торцовой плоскости.

Задачу можно существенно упростить, если зацепление принять равносмещенным $(x_1 = |-x_2| = x)$, а радиус r_{p_1} заменить на r_{c_1} , так как они отличаются не более чем на 1...2%.

Эта замена несколько повышает запас самоторможения. Из зависимостей (22) в этом случае можно получить следующие зависимости для определения β и *x*:

$$\beta = \operatorname{arctg}\left[\frac{z_1 \operatorname{tg}\beta_{c_1} + z_2 \operatorname{tg}\beta_{a_2}}{z_1 + z_2}\right]; \quad (25)$$

$$x = h_a^* - \left[z_1 \frac{\mathrm{tg}\beta - \mathrm{tg}\beta_{c_1}}{2\sin\beta} \right].$$
 (26)

Необходимо отметить некоторые особенности расчета инверсных самотормозящихся передач в сравнении с обычными передачами внешнего зацепления. После определения радиусов окружностей вершин и начальных радиусов необходимо проверить условия внеполюсности зацепления $r_{y_1} < r_{w_1}$ или $r_{y_1} > r_{w_1}$ в зависимости от варианта самоторможения [6]. Если условие внеполюсности не выполняется, то следует изменить либо коэффициент смещения x_1 , либо коэффициент высоты головки зуба h_a^* .

Особенности силового нагружения и самоторможения цилиндрических передач внешнего инверсного зацепления в тяговом режиме и режиме оттормаживания будут рассмотрены в другом исследовании.

Литература

1. ГОСТ 16530—83. Передачи зубчатые. М.: Изд-во стандартов, 1983. 49 с.

2. Гавриленко В.А. Основы теории эвольвентной зубчатой передачи. М.: Машиностроение, 1969. 432 с.

3. Справочник по геометрическому расчету эвольвентных зубчатых и червячных передач / Под ред. И.А. Болотовского. М.: Машиностроение, 1986. 448 с.

4. Панюхин В.И. Самотормозящиеся зубчатые передачи // Вестник машиностроения. 1979. № 2. С. 22—24.

5. Скворцова Н.А., Панюхин В.В. Самотормозящиеся зубчатые передачи с положительным передаточным отношением // Известия высших учебных заведений. Машиностроение. 1984. № 5. С. 32—36.

6. Тимофеев Г.А., Панюхин В.В. Модификации цилиндрических самотормозящихся передач и варианты самоторможения // Известия высших учебных заведений. Машиностроение. 1986. № 1. С. 51–54.

7. Тимофеев Г.А., Панюхин В.В. Анализ критериев самоторможения // Вестник машиностроения. 2002. № 9. С. 3—8.

8. Панюхин В.И. Условия самоторможения в зацеплениях механических передач //Известия высших учебных заведений. Машиностроение. 1979. № 11. С. 34—37.

Статья поступила в редакцию 05.08.2012