Рекуперативный теплообменный аппарат с пористым металлом для жидкостного ракетного двигателя
Авторы: Пелевин Ф.В., Пономарев А.В., Семенов П.Ю. | Опубликовано: 16.06.2015 |
Опубликовано в выпуске: #6(663)/2015 | |
Раздел: Авиационная и ракетно-космическая техника | |
Ключевые слова: рекуперативный теплообменный аппарат, пористый сетчатый металл, межканальная транспирация теплоносителя, эффективность теплообмена |
Применение диффузионно-вакуумной сварки тканых металлических сеток для изготовления пористых металлов, а также использование принципа межканальной транспирации теплоносителя является основой для создания новых высокоэффективных пористых теплообменных трактов для рекуперативных теплообменных аппаратов. Представлен новый рекуперативный теплообменный аппарат на основе принципа межканальной транспирации теплоносителя сквозь пористый сетчатый металл. Показано, что эффективность теплообмена в тракте с межканальной транспирацией теплоносителя сквозь пористый сетчатый металл при межсеточной фильтрации теплоносителя выше, чем у других теплообменных трактов. Установлено, что эффективность тракта особенно велика при малых числах Рейнольдса в диапазоне 1·103…5·104 и увеличивается с уменьшением пути движения теплоносителя сквозь пористый сетчатый металл и с увеличением теплопроводности пористого сетчатого металла. Сформулированы рекомендации по оптимальному проектированию рекуперативного теплообменного аппарата на основе принципа межканальной транспирации теплоносителя сквозь пористый сетчатый металл. Полученные результаты будут полезны при проектировании рекуперативных теплообменных аппаратов для наддува топливных баков жидкостных ракетных двигателей.
Литература
[1] Громыко Б.М., Клюева О.Г. Совершенствование теплообменников для наддува баков ракеты-носителя. Ч. 1. Кожухотрубчатый испаритель азота двигателя РД107. Тр. НПО «Энергомаш» им. академика В.П. Глушко. Москва, Изд-во НПО Энергомаш, 2006, № 24, с. 246–255.
[2] Клюева О.Г. Совершенствование теплообменников для наддува баков ракеты-носителя. Ч. 2. Цилиндрический теплообменник двигателя РД171. Тр. НПО «Энергомаш» им. академика В.П. Глушко. Москва, Изд-во НПО Энергомаш, 2006, № 24, с. 256–271.
[3] Белов Е.А., Григоркин Н.М., Клюева О.Г. Опыт создания и обеспечения работоспособности пластинчато-ребристых теплообменников для наддува баков ракет-носителей. Тр. НПО «Энергомаш» им. академика В.П. Глушко. Москва, Изд-во НПО Энергомаш, 2010, № 27, с. 167–271.
[4] Пелевин Ф.В., Ильинская О.И., Орлин С.А. Применение компланарных каналов в технике. Вестник ПНИПУ. Аэрокосмическая техника, 2014, № 37, с. 71–85.
[5] Поляков А.Ф., Стратьев В.К., Третьяков А.Ф., Шехтер Ю.Л. Теплоотдача в оболочках из пористых сетчатых материалов. Теплоэнергетика, 2009, № 3, с. 46–52.
[6] Поляков А.Ф., Стратьев В.К., Третьяков А.Ф., Шехтер Ю.Л. Обобщение экспериментальных данных по теплоотдаче в проницаемых оболочках из пористых сетчатых материалов. Теплоэнергетика, 2010, № 6, с. 57–62.
[7] Зейгарник Ю.А., Иванов Ф.П. К оценке теплогидравлических характеристик пористых структур. Тр. Пятой Рос. национальной конф. по теплообмену. Москва, Изд-во МЭИ, 2010, т. 5, с. 172–175.
[8] Зейгарник Ю.А., Иванов Ф.П. Обобщение опытных данных по внутреннему теплообмену в пористых структурах. Теплофизика высоких температур, 2010, т. 48, № 3, с. 402–408.
[9] Леонтьев А.И, Пилюгин Н.Н., Полежаев Ю.В., Поляев В.М., ред. Научные основы технологий 21 века. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2000. 136 с.
[10] Резник С.В., ред. Конструкционные пористые материалы. В 3 т. Т. 2. Материалы и покрытия в экстремальных условиях. Передовые технологии производства. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2002, с. 186–254.
[11] Демянко Ю.Г., Конюхов Г.В., Коротеев А.С., Кузьмин Е.П., Павельев А.А. Ядерные ракетные двигатели. Москва, ООО Норма-Информ, 2001. 416 с.