УДК 62-92.5.10

Исследование процесса пневмотранспорта гранул полиэтилена в поворотных коленах трубопровода

А.А. Очков, С.В. Годорожа, М.И. Хамади

МГТУ им. Н.Э. Баумана

Studying the process of the polyethylene granules pneumatic transportation in the pipeline rotary bends

A.A. Ochkov, S.V. Godorozha, M.I. Khamadi

Bauman Moscow State Technical University

Пневмотранспорт гранул полиэтилена широко распространен в химической промышленности благодаря таким достоинствам, как высокая производительность, экологичность, простота монтажа и автоматизация управления процессом. Проведено математическое моделирование течения двухфазного потока (газа и гранул) с применением подходов Эйлера — Эйлера и Эйлера — Лагранжа, а также модели плотной дискретной фазы. Сделаны рекомендации по выбору математической модели и уточнению ее параметров для описания процесса пневмотранспорта гранул полиэтилена. Выполнена верификация математической модели рабочего процесса Эйлера — Эйлера путем сравнения с экспериментальными данными, расхождение не превысило 5 %. С помощью математической модели течения двухфазного потока Эйлера — Эйлера исследовано влияние различных факторов на основные характеристики системы пневмотранспорта гранул полиэтилена.

EDN: WREPEZ, https://elibrary/wrepez

Ключевые слова: пневмотранспорт, гранулы полиэтилена, двухфазный поток, математическое моделирование, колено трубопровода

Pneumatic transportation of the polyethylene granules is widely used in the chemical industry due to a number of advantages. They include high productivity, ecological friendliness, ease in installation, and automated process control. The paper presents results of mathematical simulation of a two-phase flow (gas and granules) using the Euler-Euler and Euler-Lagrange approaches, as well as of the dense discrete phase model. It provides recommendations in selecting a mathematical model and refining its parameters to describe the process of the polyethylene granules pneumatic transportation. Mathematical model of the Euler-Euler working process is verified by comparing it with the experimental data. The discrepancy is not exceeding 5%. The two-phase flow Euler-Euler mathematical model makes it possible to study the influence of various factors on main characteristics of the polyethylene granules pneumatic transportation system.

EDN: WREPEZ, https://elibrary/wrepez

Keywords:pneumatic transportation, polyethylene granules, two-phase flow, mathematical simulation, pipeline bend

Система пневмотранспорта — это комплекс устройств, обеспечивающих перемещение сыпучих материалов (гранул полиэтилена, песка, муки, цемента и др.) с помощью сжатого или разреженного газа. В большинстве установок в качестве транспортирующего газа выступает воздух.

Пневмотранспорт широко применяют для транспортирования гранул полиэтилена в силу высокой производительности, компактности, эргономичности, экологичности, отсутствия остатков перемещаемого материала в линиях, относительно простого монтажа и возможности полной автоматизации управления.

Несмотря на существенные достоинства, у процесса пневматического транспортирования гранул полиэтилена есть такие недостатки, как более высокая энергоемкость перемещения единицы массы материала по сравнению с таковой для механических видов транспорта сыпучих материалов и образование волокон полиэтилена на внутренней поверхности трубопровода.

Как показал анализ работ [1–7], образование полиэтиленовых лент на внутренних стенках трубопровода является малоизученным процессом и оказывает негативное воздействие на систему пневмотранспорта, увеличивая потери давления газа, уменьшая скорость транспортирования и ухудшая качество материала. На это влияют такие параметры, как температура газа, шероховатость внутренней стенки, геометрические параметры элементов трубопровода и др.

Математическое моделирование распределения в линиях системы пневмотранспорта характерных параметров двухфазного потока перепада давления газа, концентрации твердых частиц (ТЧ), скорости движения, температуры ТЧ и газа, теплопередачи — является основополагающим фактом для анализа течения потока в трубопроводе, достижения оптимальной конструкции системы пневмотранспорта по выбираемым критериям.

Цель статьи — разработка математической модели процесса пневматического транспортирования гранул полиэтилена, учитывающей размеры ТЧ, сжимаемость газа, взаимодействие ТЧ друг с другом, с газом и стенками трубопровода.

Моделированию транспорта сыпучих материалов посвящены работы И.М. Разумова [8], В.Г. Левича [9] и др.

Существуют два подхода к математическому моделированию течения двухфазных потоков: Эйлера — Лагранжа и Эйлера — Эйлера [10, 11].

В подходе Эйлера — Лагранжа траектории ТЧ вычисляют в лагранжевой системе координат, положение, скорость перемещения, ускорение и другие параметры каждой ТЧ определяют с помощью второго закона Ньютона. Газовую фазу рассматривают как сплошную (далее СФ) и моделируют в постановке Эйлера, а твердую фазу (далее ДФ) — как дискретные ТЧ.

Дискретные ТЧ могут обмениваться импульсом, массой и энергией с СФ. Достоинством подхода Эйлера — Лагранжа является получение детальной статистической информации о движении отдельных ТЧ в результате интегрирования уравнений их движения (теплообмена) в известном (предварительно рассчитанном) поле скоростей (температур) несущего потока. Однако этот подход можно применять в разбавленных потоках, где локальные значения объемной доли ТЧ не превышают 10 % [12].

В подходе Эйлера — Эйлера газ и ТЧ рассматривают как сплошные взаимопроникающие фазы [13]. Отдельно для обеих фаз решают уравнения Навье — Стокса, а ТЧ дополнительно описывают уравнениями кинетической теории гранулярного потока. Так как в этом подходе моделируют две СФ, необходимо определить объемную долю ДФ. Модель Эйлера — Эйлера позволяет моделировать любые многофазные течения потока, ее применимость не ограничивается содержанием ТЧ в потоке. К недостаткам моделей такого типа можно отнести невозможность получения информации о движении отдельных ТЧ, а также сложность в постановке граничных условий для ДФ на ограничивающих течение потока поверхностях.

Модель плотной ДФ, реализованная в программном комплексе ANSYS Fluent, является результатом объединения подходов Эйлера — Лагранжа и Эйлера — Эйлера. Учет объемной доли дискретных ТЧ в уравнениях сохранения массы и импульса позволяет преодолеть ограничения модели Эйлера — Лагранжа по объемной доле ТЧ [14].

Важным аспектом при анализе течения многофазных потоков является взаимодействие между фазами. Если СФ воздействует на ДФ (посредством аэродинамического сопротивления и турбулентного переноса), которая не влияет на СФ, то такое взаимодействие является односторонним. В случае двустороннего взаимодействия поведение ДФ и СФ взаимосвязано, обмен импульсом, энергией и массой между фазами приводит к появлению источниковых членов в уравнениях для СФ. Если столкновение между ТЧ оказывает влияние на течение СФ, то в нем реализуется четырехстороннее взаимодействие.

Выбор схемы взаимодействия зависит от объемной доли ТЧ и расстояния между ними. Так, одностороннее взаимодействие имеет место в достаточно разреженных потоках, где объемная доля ТЧ не превышает 10⁻⁶, а среднее безразмерное расстояние между ними менее 100.

Четырехстороннее взаимодействие становится важным для плотных потоков, когда объемная доля ТЧ превышает 10⁻³, а среднее безразмерное расстояние между ТЧ более 10. При этом объемная доля ДФ определяется как

$$\alpha_d = V_d / V$$
,

где *V*_d — объем ДФ; *V* — объем смеси.

Для выбора модели многофазного течения и схемы взаимодействия фаз необходимо оценить следующие параметры системы:

• содержание ТЧ

$$\beta = \frac{\alpha_d \rho_d}{\alpha_c \rho_c};$$

• отношение плотности ДФ ρ_d к плотности СФ ρ_c

$$\gamma = \frac{\rho_d}{\rho_c};$$

• среднее безразмерное расстояние между ТЧ

$$\frac{L}{d_d} = \left(\frac{\pi}{6}\frac{1+k}{k}\right)^{1/3};$$

• число Стокса

$$\operatorname{St} = \frac{\tau_d}{t_s}$$

Здесь α_c — объемная доля СФ; d_d — диаметр ТЧ; $k = \beta/\gamma$; τ_d — время релаксации ТЧ — постоянная времени в экспоненциальном затухании скорости перемещения ТЧ из-за сопротивления; t_s — время отклика системы, $t_s = L_s/v_s$ (L_s и v_s — характерные длина и скорость системы).

Время релаксации ТЧ

$$\tau_d = \frac{d_d^2 \rho_d}{18 \mu_c},$$

где μ_c — динамическая вязкость СФ.

При числе Стокса ST ≪1 ДФ и СФ находятся в состоянии, близком к равновесию, фазы имеют одинаковое поле скоростей. В этом случае применимы оба подхода, но предпочтение отдается подходу Эйлера — Лагранжа в силу меньших требований к вычислительным ресурсам.

При числе Стокса ST ≫1 несущая фаза не влияет на движение ТЧ. В этом случае также применимы подходы Эйлера — Лагранжа и Эйлера — Эйлера, однако особое внимание необходимо уделить объемной доле ТЧ, ограничивающей применение моделей Лагранжа. Например, в системе с характерными длиной 0,2 м и скоростью движения 2 м/с число Стокса составляет 0,005 для ТЧ диаметром 300 мкм. В этом случае применима только модель Эйлера — Эйлера, так как объемная доля ТЧ слишком высока для модели Эйлера — Лагранжа.

Рассмотрен участок трубопровода диаметром 0,2 м, входящий в состав полноразмерной системы пневмотранспорта полиэтилена и состоящий из горизонтального длиной 4 м и вертикального длиной 4 м участков, соединенных коленом с углом 90° и радиусом 1 м (рис. 1). Гранулы полиэтилена плотностью 940 кг/м³ (взвешенная плотность 425 кг/м³) и диаметром 2...3 мм через нагнетатель поступают в трубопровод и транспортируются потоком воздуха. Расход воздуха составляет 5,5 кг/с, расход гранул — 1,75 кг/с. Число Стокса в первом приближении составляет 1713, а объемная доля гранул полиэтилена — 10⁻³, что указывает на необходимость учета четырехстороннего взаимодействия фаз.

Принимая во внимание вероятное локальное увеличение объемной доли гранул в колене трубопровода, для анализа двухфазного движе-

Рис. 1. Схема экспериментального участка системы пневмотранспорта полиэтилена

Координаты сечений трубопровода

Сечение	х, м	<i>у</i> , м	Сечение	х, м	<i>у</i> , м	Сечение	х, м	у, м
1	1	0	4	4	0	7	5	3
2	2	0	5	5	1	8	5	4
3	3	0	6	5	2	9	5	5

ния потока в колене системы пневмотранспорта полиэтилена разработаны математические модели рабочих процессов, основанные на подходе Эйлера — Эйлера и модели плотной дискретной фазы.

Координаты сечений трубопровода приведены в таблице.

Математическая модель движения двухфазного потока, основанная на подходе Эйлера — Эйлера [14], включает в себя следующее:

уравнение переноса импульса для ДФ

$$\frac{\partial}{\partial t} (\alpha_d \rho_d W_{jd}) + \frac{\partial}{\partial x_j} (\alpha_d \rho_d W_{jd} W_{id}) = \\ = -\alpha_d \frac{\partial p}{\partial x_i} - \frac{\partial p_d}{\partial x_i} + \frac{\partial \tau_{ijd}}{\partial x_j} + \alpha_d \rho_d g_i + K_{cd} (W_{ic} - W_{id});$$

• уравнение переноса импульса для СФ

$$\frac{\partial}{\partial t} (\alpha_c \rho_c W_{jc}) + \frac{\partial}{\partial x_j} (\alpha_c \rho_c W_{jc} W_{ic}) =$$
$$= -\alpha_c \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ijc}}{\partial x_j} + \alpha_c \rho_c g_i + K_{cd} (W_{id} - W_{ic});$$

• уравнение неразрывности для ДФ

$$\frac{\partial}{\partial t}(\alpha_d \rho_d) + \nabla(\alpha_d \rho_d W_d) = 0$$

• уравнение неразрывности для СФ

$$\frac{\partial}{\partial t}(\alpha_c \rho_c) + \nabla(\alpha_c \rho_c W_c) = 0,$$

где t — время; W_{jd} , W_{id} и W_{jc} , W_{ic} — проекции векторов скорости перемещения ДФ и СФ на оси x_j и x_i ; индексы «*i*», «*j*» и «*k*» соответствуют ортам **i**, **j**, **k**; τ_{ijd} и τ_{ijc} — тензоры напряжений ДФ и СФ; g_i — ускорение свободного падения; K_{cd} — коэффициент взаимодействия СФ и ДФ; W_d и W_c — скорости движения ДФ и СФ.

Тензор напряжений ДФ

$$\tau_{ijd} = \alpha_d \mu_d \left(\frac{\partial W_{id}}{\partial x_j} + \frac{\partial W_{jd}}{\partial x_i} \right) + \\ + \left(\alpha_d \nu_d - \frac{2}{3} \alpha_d \mu_d \right) \delta_{ij} \frac{\partial W_{kd}}{\partial x_k},$$

где μ_d и ν_d — сдвиговая и объемная вязкости ДФ; δ_{ij} — символ Кронекера.

Тензор напряжений СФ

$$\mathbf{t}_{ijc} = \frac{2}{3} \alpha_c \rho_c k \delta_{ij} + \alpha_c \mu_c^{eff} \left(\frac{\partial W_{ic}}{\partial x_j} + \frac{\partial W_{jc}}{\partial x_i} - \frac{2}{3} \delta_{ij} \frac{\partial W_{kc}}{\partial x_k} \right),$$

где k — турбулентная кинетическая энергия СФ; μ_c^{eff} — эффективная вязкость СФ;

$$\alpha_c + \alpha_d = 1.$$

При моделировании течения двухфазных потоков, основываясь на подходе Эйлера, ДФ рассматривают как псевдожидкость, для которой вводят давление ДФ p_d [15–17]. Для расчета давления ДФ используют уравнение [15]

$$p_d = \alpha_d \rho_d \Theta_d \left[1 + 2 \left(1 + e_d \right) \alpha_d g_{od} \right].$$

Здесь Θ_d — кинетическая температура ТЧ (пропорциональна кинетической энергии частиц ДФ); e_d — коэффициент релаксации ТЧ; g_{od} — радиальная функция распределения материала [13],

$$g_{od} = \left[1 - \left(\frac{\alpha_d}{\alpha_{d \max}}\right)^{1/3}\right]^{-1},$$

где $\alpha_{d \max}$ — максимальная объемная ДФ.

Коэффициент взаимодействия ДФ и СФ K_{cd} , учитывающий неравномерность распределения ДФ и ее взаимодействие со стенками трубопровода (рассчитываемый по рекомендациям работы [18]) в зависимости от объемной доли СФ позволяет учитывать изменение сил взаимодействия в потоке при изменении ее концентрации:

• при α_c >0,8

$$K_{cd} = \frac{3}{4} C_D \frac{\alpha_d \alpha_c \rho_c \left(W_c - W_d\right)}{D} \alpha_c^{-2.65};$$

• при α_c ≤0,8

$$K_{cd} = 150 \frac{\alpha_d \left(1 - \alpha_c\right) \mu_c}{\alpha_c d_d^2} + 1,75 \frac{\alpha_d \rho_c \left| W_d - W_c \right|}{d_d}.$$

Здесь *D* — диаметр трубопровода; *C*_D — коэффициент лобового сопротивления ТЧ,

$$C_D = \frac{24}{\alpha_c \operatorname{Re}_d} \left[1 + 0.15 \left(\alpha_c \operatorname{Re}_d \right)^{0.687} \right]$$

где Re_d — число Рейнольдса для ДФ.

+

+

Сдвиговая вязкость ДФ [19, 20]

$$\mu_d = \mu_{d \, coll} + \mu_{d \, kin},$$

где $\mu_{d \ coll}$ — вязкость от соударений; $\mu_{d \ kin}$ — кинетическая вязкость,

$$\mu_{d coll} = \frac{4}{5} \alpha_d \rho_d d_d g_{od} \left(1 + e_d\right) \left(\frac{\Theta_d}{\pi}\right)^{0,5};$$

$$\mu_{d kin} = \frac{\alpha_d \rho_d d_d \sqrt{\Theta_d \pi}}{6(3 - e_d)} \left[1 + \frac{2}{5}(1 + e_d)(3e_d - 1)g_{od}\alpha_d\right]$$

Объемная вязкость [19]

$$\mathbf{v}_d = \frac{3}{4} \alpha_d \rho_d d_d g_{od} \left(1 + e_d\right) \left(\frac{\Theta_d}{\pi}\right)^{0.5}.$$

Кинетическую температуру Θ_d определяют из уравнения переноса для кинетической температуры [19]:

$$\frac{2}{3} \left[\frac{\partial}{\partial t} (\alpha_c \rho_c \Theta_d) + \frac{\partial}{\partial x_j} (\alpha_c \rho_c W_{jc} \Theta_d) \right] = \\ = (-p_d \delta_{ij} + \tau_{ijd}) \frac{\partial W_{id}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(k_{\Theta_d} \frac{\partial \Theta_d}{\partial x_j} \right) - \psi_{\Theta_d} + \varphi_{\Theta_d},$$

где k_{Θ_d} — коэффициент диффузии энергии гранул ДФ [14]; ψ_{Θ_d} — диссипация энергии столкновений [14]; ϕ_{Θ_d} — коэффициент переноса энергии от СФ к ДФ [14].

В этом выражении:

$$k_{\Theta_d} = \frac{\alpha_d \rho_d d_d \sqrt{\Theta_d} \pi}{4(41 - 33\eta)} \times \left[1 + \frac{12}{5} \eta^2 (4\eta - 3) g_{od} \alpha_d + \frac{16}{5\pi} (41 - 33\eta) g_{od} \alpha_d \eta\right];$$
$$\psi_{\Theta_d} = \frac{12(1 - e_d^2) g_{od} \rho_d \alpha_d^2 \Theta_d^{2/3}}{d_d \pi};$$
$$\varphi_{\Theta_d} = -3K_{cd} \Theta_d,$$

где

$$\eta = \frac{1}{2} (1 + e_d).$$

Коэффициент теплообмена между фазами [14]

$$h_{cd} = \frac{k_c \mathrm{Nu}_d}{d_d}.$$

Здесь *k*_c — коэффициент теплопроводности СФ; Nu_d — число Нуссельта для ДФ, определяемое по формуле Ранца — Маршалла,

$$Nu_d = 2 + 0,6Re_d^{1/2}Pr_c^{1/3};$$

$$\Pr_c = c_{pc} \mu_c / k_c,$$

где Pr_c — число Прандтля для СФ, с_{pc} — удельная теплоемкость СФ.

Для описания турбулентных свойств двухфазного потока принята *k*-*ε*-модель турбулентности. Для двухфазного потока записывают уравнения переноса турбулентной кинетической энергии *k* и скорости ее диссипации *ε* для каждой фазы отдельно с учетом межфазного взаимодействия:

• уравнение переноса турбулентной кинетической энергии для ДФ k_d

$$\begin{aligned} \frac{\partial}{\partial t} (\alpha_{d} \rho_{d} k_{d}) + \frac{\partial}{\partial x_{j}} (\alpha_{d} \rho_{d} W_{jd} k_{d}) &= \\ &= \frac{\partial}{\partial x_{j}} \left(\alpha_{d} \frac{\mu_{td}}{\Pr_{kd}} \frac{\partial k_{d}}{\partial x_{j}} \right) + \alpha_{d} \rho_{d} \left(G_{d} - \varepsilon_{d} \right) + \\ K_{cd} \left(C_{cd} k_{c} - C_{dc} k_{d} \right) - K_{dc} \left(W_{jc} - W_{jd} \right) \frac{\mu_{tc}}{\alpha_{c} \Pr_{kc}} \frac{\partial \alpha_{c}}{\partial x_{j}} + \\ &+ K_{cd} \left(W_{jc} - W_{jd} \right) \frac{\mu_{tc}}{\alpha_{c} \Pr_{kc}} \frac{\partial \alpha_{c}}{\partial x_{j}} + \\ &+ K_{cd} \left(W_{jc} - W_{jd} \right) \frac{\mu_{td}}{\alpha_{d} \Pr_{kd}} \frac{\partial \alpha_{d}}{\partial x_{j}}; \end{aligned}$$

• уравнение переноса турбулентной кинетической энергии для СФ k_c

$$\begin{aligned} \frac{\partial}{\partial t} (\alpha_c \rho_c k_c) + \frac{\partial}{\partial x_j} (\alpha_c \rho_c W_{jc} k_c) &= \\ &= \frac{\partial}{\partial x_j} \left(\alpha_c \frac{\mu_{tc}}{\Pr_{kc}} \frac{\partial k_c}{\partial x_j} \right) + \alpha_c \rho_c (G_c - \varepsilon_c) + \\ K_{cd} (C_{dc} k_d - C_{cd} k_c) - K_{cd} (W_{jd} - W_{jc}) \frac{\mu_{td}}{\alpha_d \Pr_{kd}} \frac{\partial \alpha_d}{\partial x_j} + \\ &+ K_{cd} (W_{jd} - W_{jc}) \frac{\mu_{tc}}{\alpha_c \Pr_{kc}} \frac{\partial \alpha_c}{\partial x_j}; \end{aligned}$$

• уравнение переноса скорости диссипации турбулентной кинетической энергии для ДФ ε_d

$$\begin{aligned} \frac{\partial}{\partial t} (\alpha_{d} \rho_{d} \varepsilon_{d}) + \frac{\partial}{\partial x_{j}} (\alpha_{d} \rho_{d} W_{jd} \varepsilon_{d}) &= \\ &= \frac{\partial}{\partial x_{j}} \left(\alpha_{d} \frac{\mu_{td}}{\Pr_{\varepsilon d}} \frac{\partial \varepsilon_{d}}{\partial x_{j}} \right) + \\ &+ \alpha_{d} \rho_{d} \frac{\varepsilon_{d}}{k_{d}} (C_{1e} G_{d} - C_{2e} \varepsilon_{d}) + C_{3e} \frac{\varepsilon_{d}}{k_{d}} (C_{cd} k_{c} - C_{dc} k_{d}) - \\ &- C_{3e} \frac{\varepsilon_{d}}{k_{d}} K_{cd} (W_{jc} - W_{jd}) \frac{\mu_{tc}}{\alpha_{c} P r_{\varepsilon c}} \frac{\partial \alpha_{c}}{\partial x_{j}} + \\ &+ C_{3e} \frac{\varepsilon_{d}}{k_{d}} K_{cd} (W_{jc} - W_{jd}) \frac{\mu_{td}}{\alpha_{d} \Pr_{\varepsilon d}} \frac{\partial \alpha_{d}}{\partial x_{j}}; \end{aligned}$$

+

 уравнение переноса скорости диссипации турбулентной кинетической энергии для CΦ ε_c

$$\frac{\partial}{\partial t} (\alpha_{c} \rho_{c} \varepsilon_{c}) + \frac{\partial}{\partial x_{j}} (\alpha_{c} \rho_{c} W_{jc} \varepsilon_{c}) = \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{tc}}{\Pr_{\varepsilon c}} \frac{\partial \varepsilon_{c}}{\partial x_{j}} \right) + + \alpha_{c} \rho_{c} \frac{\varepsilon_{c}}{k_{c}} (C_{1e} G_{c} - C_{2e} \varepsilon_{c}) + C_{3e} \frac{\varepsilon_{c}}{k_{c}} (C_{dc} k_{d} - C_{cd} k_{c}) - - C_{3e} \frac{\varepsilon_{c}}{k_{c}} K_{dc} (W_{jd} - W_{jc}) \frac{\mu_{td}}{\alpha_{d}} \frac{\partial \alpha_{d}}{\partial x_{j}} + + C_{3e} \frac{\varepsilon_{d}}{k_{d}} K_{dc} (W_{jd} - W_{jc}) \frac{\mu_{tc}}{\alpha_{c}} \frac{\partial \alpha_{c}}{\partial x_{j}}.$$

Здесь \Pr_{kd} , \Pr_{kc} и $\Pr_{\epsilon d}$, $\Pr_{\epsilon c}$ — турбулентные числа Прандтля для ДФ и СФ соответственно; G_d и G_c — источники турбулентной кинетической энергии для ДФ и СФ; C_{cd} , C_{dc} , $C_{1e}...C_{3e}$, — константы модели турбулентности; μ_{td} , μ_{tc} — турбулентные вязкости ДФ и СФ,

$$\mu_{td} = \alpha_d C_\mu \frac{k_d^2}{\varepsilon_d}; \quad \mu_{tc} = \alpha_c C_\mu \frac{k_c^2}{\varepsilon_c},$$

где *С*_µ — константа модели турбулентности.

Источники турбулентной кинетической энергии определяют по следующим формулам [9]:

• для ДФ

$$G_d = \mu_{td} \left(\frac{\partial W_{id}}{\partial x_j} + \frac{\partial W_{jd}}{\partial x_i} \right) \frac{\partial W_{jd}}{\partial x_i};$$

• для СФ

$$G_{c} = \mu_{tc} \left(\frac{\partial W_{ic}}{\partial x_{j}} + \frac{\partial W_{jc}}{\partial x_{i}} \right) \frac{\partial W_{jc}}{\partial x_{i}}$$

Константы C_{dc} и C_{cd} аппроксимированы уравнениями

$$C_{dc} = 2;$$
 $C_{cd} = 2\left(\frac{\eta_{dc}}{1+\eta_{dc}}\right).$

Здесь

$$\eta_{dc} = \frac{0,135K_{dc}k_c}{\alpha_d \rho_d \varepsilon_c \left(\frac{\rho_d}{\rho_d} + 0,5\right) \sqrt{1 + \xi^2 (1,8 - 1,35\cos^2 \Theta_d)}};$$
$$\xi = 0,11 \frac{|W_d - W_c|}{k_d^{0,5}}.$$

В модели плотной ДФ моделирование СФ выполняли с помощью подхода Эйлера, а ДФ рассматривали не как псевдожидкость, а как твердые сферы (т. е. деформацией ТЧ и внутренними течениями потока в них пренебрегали) малых размеров с заданной массой m_d . Траектории ТЧ вычисляли путем интегрирова-

ния сил, действующих на ТЧ в лагранжевой системе координат. Положение, скорость движения, ускорение и другие параметры каждой ТЧ определяли с помощью второго закона Ньютона:

$$m_d \frac{d\mathbf{W}_d}{dt} = m_d \frac{\mathbf{W}_c - \mathbf{W}_d}{\mathbf{\tau}_r} + m_d \frac{\mathbf{g}(\rho_d - \rho_c)}{\rho_d} + \mathbf{F},$$

где τ_r — время релаксации ТЧ,

$$\mathbf{r}_r = \frac{\rho_d d_d^2}{18\mu_c} \frac{24}{C_D \mathrm{Re}};$$

g — ускорение свободного падения; **F** — результирующая сила, действующая на ТЧ; Re — число Рейнольдса СФ.

Объемную долю ДФ вычисляли в ячейке, а затем использовали в уравнениях сохранения массы и импульса Эйлера [14]:

$$\frac{\partial}{\partial t} (\alpha_{d} \rho_{d}) + \nabla (\alpha_{d} \rho_{d} \mathbf{W}_{d}) = \dot{m}_{cd} - \dot{m}_{dc};$$

$$\frac{\partial}{\partial t} (\alpha_{d} \rho_{d} \mathbf{W}_{d}) + \nabla (\alpha_{d} \rho_{d} \mathbf{W}_{d} \mathbf{W}_{d}) =$$

$$= -\alpha_{d} \nabla p + \nabla [\alpha_{d} \mu_{d} (\nabla \mathbf{W}_{d} + \nabla \mathbf{W}_{d}^{\mathrm{T}})] +$$

$$+ \alpha_{d} \rho_{d} \mathbf{g} + \mathbf{F} + \mathbf{K}_{qp} (\mathbf{W}_{c} - \mathbf{W}_{d}) +$$

$$\dot{m}_{cd} \mathbf{W}_{cd} - \dot{m}_{dc} \mathbf{W}_{dc} + \mathbf{K}_{qp} (\mathbf{W}_{DPM} - \mathbf{W}_{d}) + S_{DPM}$$

где \dot{m}_{cd} , \dot{m}_{dc} — массообмен от СФ к ДФ и от ДФ к СФ соответственно; \mathbf{K}_{qp} — коэффициент обмена импульсом между фазами; S_{DPM} источниковый член; \mathbf{W}_{DPM} — осредненная скорость движения частиц ДФ.

Численное моделирование течения двухфазного потока в колене системы пневмотранспорта полиэтилена выполняли в программном комплексе ANSYS Fluent. Подход Эйлера — Эйлера реализовывали с помощью многофазной модели Eulerian granular. В этой модели гранулы полиэтилена задавали как псевдожидкость, а в модели плотной ДФ, являющейся расширением модели Eulerian granular, — с помощью модели Discrete Phase.

Валидацию численного моделирования проводили путем сравнения результатов расчета перепада давления между сечениями трубопровода с экспериментальными данными [21].

Результаты сравнения экспериментальных и расчетных (для условий эксперимента) значений перепада давления между сечениями трубопровода, полученные с использованием подходов Эйлера — Эйлера и Эйлера — Лагранжа приведены на рис. 2.

Рис. 2. Результаты сравнения экспериментальных и расчетных значений перепада давления между сечениями трубопровода, полученные с использованием подходов Эйлера — Эйлера (•) и Эйлера — Лагранжа (■)

Рис. 3. Распределение объемной доли ДФ в колене (*a*) и сечении за коленом (*б*) трубопровода, полученное с использованием модели Эйлера — Эйлера

Рис. 4. Распределение объемной доли ДФ в колене (*a*) и сечении за коленом (*б*) трубопровода, полученное с использованием модели плотной ДФ

Рис. 5. Распределение температуры ДФ, К, в трубопроводе, полученное с использованием модели плотной ДФ

Сплошная линия с углом наклона 45° означает совпадение экспериментальных данных с расчетными. Штриховые линии ограничивают область расхождения расчета ±5 %. Расхождение расчетных значений перепада давления с использованием модели Эйлера — Эйлера с результатами эксперимента не превысило 5 %, что свидетельствует о точности модели. Расхождение расчетных данных с использованием модели плотной ДФ с экспериментальными данными превысило 5 % в сечениях 1–2, 2–3, 3–4, 5–6, 7–8, 8–9.

Распределения объемной доли ДФ в сечениях трубопровода, полученные с использованием

подходов Эйлера — Эйлера и Эйлера — Лагранжа, приведены на рис. 3 и 4. Распределение температуры ДФ в трубопроводе показано на рис. 5. Объемная доля ДФ в колене увеличивается под действием сил инерции. Математическая модель Эйлера — Эйлера дает физически более верную картину перемещения ТЧ по сравнению с моделью плотной ДФ.

Выводы

1. Разработана математическая модель процесса пневматического транспортирования гранул полиэтилена, учитывающая размеры ТЧ, сжимаемость газа, взаимодействие ТЧ друг с другом, с газом и стенками трубопровода.

2. Установлена точность математической модели пневматического транспортирования гранул, основанной на подходе Эйлера — Эйлера, вследствие чего ее можно использовать для выбора энергоэффективных режимов работы пневмотранспортных установок. Расхождение расчетных и экспериментальных данных не превысило 5 %.

3. Показано, что по сравнению с моделью Эйлера модель плотной ДФ дает большее расхождение результатов расчета и эксперимента и меньшее соответствие физическим процессам.

Литература

- Pan R., Wypych P.W. Pressure drop and slug velocity in low-velocity pneumatic conveying of bulk solids. *Powder Technol.*, 1997, vol. 94, no. 2, pp. 123–132, doi: https://doi.org/ 10.1016/S0032-5910(97)03290-7
- [2] Mason D.J., Levy A. A model for non-suspension gas-solids flow of fine powders in pipes. *Int. J. Multiph. Flow*, 2001, vol. 27, no. 3, pp. 415–435, doi: https://doi.org/10.1016/ S0301-9322(00)00033-1
- [3] Hilton J.E., Cleary P.W. The influence of particle shape on flow modes in pneumatic conveying. *Chem. Eng. Sci.*, 2011, vol. 66, no. 3, pp. 231–240, doi: https://doi.org/10.1016/ j.ces.2010.09.034
- [4] Lain S., Sommerfeld M. Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behavior. *Int. J. Multiph. Flow*, 2012, vol. 39, pp. 105–120, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.006
- [5] Hanley K.J., Byrne E.P., Cronin K. Probabilistic analysis of particle impact at a pipe bend in pneumatic conveying. *Powder Technol.*, 2013, vol. 233, pp. 176–185, doi: https://doi.org/ 10.1016/j.powtec.2012.08.018
- [6] Villermaux E. The formation of filamentary structures from molten silicates: Pele's hair, angel hair, and blown clinker. CR Mecanique, 2012, vol. 340, no. 8, pp. 555–564, doi: https://doi.org/10.1016/j.crme.2012.06.003
- [7] Mills D. Pneumatic conveying design guide. Butterworth-Heinemann, 2004. 650 p.
- [8] Разумов И.М. Псевдоожижение и пневмотранспорт сыпучих материалов. Москва, Химия, 1972. 238 с.

- [9] Левич В.Г., Мясников В.П. Кинетическая теория псевдоожиженного состояния. *Хими*ческая промышленность, 1966, № 6, с. 404–408.
- [10] Elghobashi S. On predicting particle-laden turbulent flows. Appl. Sci. Res., 1994, vol. 52, no. 4, pp. 309–329, doi: https://doi.org/10.1007/BF00936835
- [11] Elgobashi S.E., Abou-Arab T.W. A two-equation turbulence model for two-phase flows. *Phys. Fluids*, 1983, vol. 26, no. 4, pp. 931–938, doi: https://doi.org/10.1063/1.864243
- [12] Han T., Levy A., Kalman H. DEM simulation for attrition of salt during dilute-phase pneumatic conveying. *Powder Technol.*, 2003, vol. 129, no. 1, pp. 92–100, doi: https://doi.org/ 10.1016/S0032-5910(02)00252-8
- [13] Gidaspow D. Multiphase flow and fluidization. Academic Press, 1994. 488 p.
- [14] ANSYS FLUENT user's guide. Software release version 2021R2. 2021.
- [15] Gidaspow D., Bezburuah R., Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach. 7th Engineering Foundation Conf. on Fluidization, 1992, pp. 75–82.
- [16] Syamlal M., Rogers W., O'Brien T.J. *MFIX documentation. Theory guide.* U.S. Department of Energy, 1993. 52 p.
- [17] Ma D., Ahmadi G. A thermodynamical formulation for dispersed multiphase turbulent flows-1,2. Int. J. Multiph. Flow, 1990, vol. 16, no. 2, pp. 323–351, doi: https://doi.org/ 10.1016/0301-9322(90)90062-N
- [18] Ogawa S., Umemura A., Oshima N. On the equation of fully fluidized granular materials. *AIChE Journal*, 1990, vol. 36, pp. 523–538.
- [19] Wen C.-Y., Yu Y.H. Mechanics of fluidization. Chemical Engineering Progress Symposium Series, 1966, vol. 62, pp. 100–111.
- [20] Lun C.K.K., Savage S.B., Jeffrey D.J. et al. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field. *J. Fluid Mech.*, 1984, vol. 140, pp. 223–256, doi: https://doi.org/10.1017/S0022112084000586
- [21] Tripathi N.M., Santo N., Kalman H. et al. Experimental analysis of particle velocity and acceleration in vertical dilute phase pneumatic conveying. *Powder Technol.*, 2018, vol. 330, pp. 239–251, doi: https://doi.org/10.1016/j.powtec.2018.02.017

References

- Pan R., Wypych P.W. Pressure drop and slug velocity in low-velocity pneumatic conveying of bulk solids. *Powder Technol.*, 1997, vol. 94, no. 2, pp. 123–132, doi: https://doi.org/ 10.1016/S0032-5910(97)03290-7
- [2] Mason D.J., Levy A. A model for non-suspension gas-solids flow of fine powders in pipes. Int. J. Multiph. Flow, 2001, vol. 27, no. 3, pp. 415–435, doi: https://doi.org/10.1016/ S0301-9322(00)00033-1
- [3] Hilton J.E., Cleary P.W. The influence of particle shape on flow modes in pneumatic conveying. *Chem. Eng. Sci.*, 2011, vol. 66, no. 3, pp. 231–240, doi: https://doi.org/10.1016/ j.ces.2010.09.034
- [4] Lain S., Sommerfeld M. Numerical calculation of pneumatic conveying in horizontal channels and pipes: detailed analysis of conveying behavior. *Int. J. Multiph. Flow*, 2012, vol. 39, pp. 105–120, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.006
- [5] Hanley K.J., Byrne E.P., Cronin K. Probabilistic analysis of particle impact at a pipe bend in pneumatic conveying. *Powder Technol.*, 2013, vol. 233, pp. 176–185, doi: https://doi.org/ 10.1016/j.powtec.2012.08.018
- [6] Villermaux E. The formation of filamentary structures from molten silicates: Pele's hair, angel hair, and blown clinker. CR Mecanique, 2012, vol. 340, no. 8, pp. 555–564, doi: https://doi.org/10.1016/j.crme.2012.06.003
- [7] Mills D. Pneumatic conveying design guide. Butterworth-Heinemann, 2004. 650 p.
- [8] Razumov I.M. *Psevdoozhizhenie i pnevmotransport sypuchikh materialov* [Fluidization and pneumatic conveying of bulk materials]. Moscow, Khimiya Publ., 1972. 238 p. (In Russ.).
- [9] Levich V.G., Myasnikov V.P. Kinetic theory of fluidised state. *Khimicheskaya promyshlennost*, 1966, no. 6, pp. 404–408. (In Russ.).
- [10] Elghobashi S. On predicting particle-laden turbulent flows. Appl. Sci. Res., 1994, vol. 52, no. 4, pp. 309–329, doi: https://doi.org/10.1007/BF00936835

- [11] Elgobashi S.E., Abou-Arab T.W. A two-equation turbulence model for two-phase flows. *Phys. Fluids*, 1983, vol. 26, no. 4, pp. 931–938, doi: https://doi.org/10.1063/1.864243
- [12] Han T., Levy A., Kalman H. DEM simulation for attrition of salt during dilute-phase pneumatic conveying. *Powder Technol.*, 2003, vol. 129, no. 1, pp. 92–100, doi: https://doi.org/ 10.1016/S0032-5910(02)00252-8
- [13] Gidaspow D. Multiphase flow and fluidization. Academic Press, 1994. 488 p.
- [14] ANSYS FLUENT user's guide. Software release version 2021R2. 2021.
- [15] Gidaspow D., Bezburuah R., Ding J. Hydrodynamics of circulating fluidized beds, kinetic theory approach. *7th Engineering Foundation Conf. on Fluidization*, 1992, pp. 75–82.
- [16] Syamlal M., Rogers W., O'Brien T.J. MFIX documentation. Theory guide. U.S. Department of Energy, 1993. 52 p.
- [17] Ma D., Ahmadi G. A thermodynamical formulation for dispersed multiphase turbulent flows-1,2. Int. J. Multiph. Flow, 1990, vol. 16, no. 2, pp. 323–351, doi: https://doi.org/ 10.1016/0301-9322(90)90062-N
- [18] Ogawa S., Umemura A., Oshima N. On the equation of fully fluidized granular materials. *AIChE Journal*, 1990, vol. 36, pp. 523–538.
- [19] Wen C.-Y., Yu Y.H. Mechanics of fluidization. Chemical Engineering Progress Symposium Series, 1966, vol. 62, pp. 100–111.
- [20] Lun C.K.K., Savage S.B., Jeffrey D.J. et al. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flow field. *J. Fluid Mech.*, 1984, vol. 140, pp. 223–256, doi: https://doi.org/10.1017/S0022112084000586
- [21] Tripathi N.M., Santo N., Kalman H. et al. Experimental analysis of particle velocity and acceleration in vertical dilute phase pneumatic conveying. *Powder Technol.*, 2018, vol. 330, pp. 239–251, doi: https://doi.org/10.1016/j.powtec.2018.02.017

Статья поступила в редакцию 31.10.2024

Информация об авторах

ОЧКОВ Андрей Андреевич — кандидат технических наук, доцент кафедры «Вакуумная и компрессорная техника». МГТУ им. Н.Э. Баумана (105005, Москва, Российская Федерация, 2-я Бауманская ул., д. 5, стр. 1, e-mail: aochkov@bmstu.ru).

ГОДОРОЖА Семен Васильевич — ассистент кафедры «Гидравлика, гидромашины и гидропневмоавтоматика». МГТУ им. Н.Э. Баумана (105005, Москва, Российская Федерация, 2-я Бауманская ул., д. 5, стр. 1, e-mail: godorozha@bmstu.ru).

ХАМАДИ Михаил Искандерович — аспирант кафедры «Вакуумная и компрессорная техника». МГТУ им. Н.Э. Баумана (105005, Москва, Российская Федерация, 2-я Бауманская ул., д. 5, стр. 1, e-mail: mih@bmstu.ru).

Information about the authors

OCHKOV Andrey Andreevich - Candidate of Science (Eng.), Associate Professor, Department of Vacuum and Compressor Engineering. Bauman Moscow State Technical (105005, University Moscow, Federation, Russian 2nd Baumanskaya St., Bldg. Block 5. 1. e-mail: aochkov@bmstu.ru).

GODOROZHA Semen Vasilevich — Assistant, Department of Hydraulics, Hydraulic Machines and Hydropneumatic Automation. Bauman Moscow State Technical University (105005, Moscow, Russian Federation, 2nd Baumanskaya St., Bldg. 5, Block 1, email: godorozha@bmstu.ru).

KHAMADI Mikhail Iskanderovich — Postgraduate, Department of Vacuum and Compressor Engineering. Bauman Moscow State Technical University (105005, Moscow, Russian Federation, 2nd Baumanskaya St., Bldg. 5, Block 1, e-mail: mih@bmstu.ru).

Просьба ссылаться на эту статью следующим образом:

Очков А.А., Годорожа С.В., Хамади М.И. Исследование процесса пневмотранспорта гранул полиэтилена в поворотных коленах трубопровода. Известия высших учебных заведений. Машиностроение, 2024, № 11, с. 79–88.

Please cite this article in English as:

OchkovA.A., Godorozha S.V., Khamadi M.I. Studying the process of the polyethylene granules pneumatic transportation in the pipeline rotary bends. *BMSTU Journal of Mechanical Engineering*, 2024, no. 11, pp. 79–88.