Подводная сварка с локальной водяной завесой зоны сварки
Авторы: Рогозин Д.В. | Опубликовано: 01.04.2022 |
Опубликовано в выпуске: #4(745)/2022 | |
Раздел: Машиностроение и машиноведение | Рубрика: Сварка, родственные процессы и технологии | |
Ключевые слова: подводная сварка, локальная сухая полость, водяная завеса, сопло сварочной горелки |
Интенсивное развитие добычи нефти и газа в шельфовой зоне морей и океанов обусловливает необходимость строительства морских буровых платформ. Их монтаж и ремонт выполняют подводной сваркой, осуществляемой мокрым и сухим способами, которые имеют свои достоинства и области ограничения. Одним из перспективных направлений является сварка с локальной защитой зоны сварки за счет создания вокруг нее безводной полости. Водолаз-сварщик находится вне зоны защиты. В международной практике хорошо известен способ, где экранирование зоны сварки обеспечивает водоструйная завеса вокруг сопла сварочной горелки. Дан аналитический обзор научных публикаций по исследованию процесса подводной сварки с водяной завесой сопла сварочной горелки. Изучены гидродинамические параметры сварки. Рассмотрены особенности существования устойчивого дугового разряда, факторы, обусловливающие стабильность процесса и качество сварных соединений.
Литература
[1] AWS D3.6M:2017. Underwater welding code.
[2] Sakakibara J. A survey of underwater welding and cutting in sea water. J. JWS, 1991, vol. 60, no. 1, pp. 24–29, doi: https://doi.org/10.2207/qjjws1943.60.24
[3] Labanowski J., Fydrych D., Rogalski G. Underwater welding — a review. Adv. Mater. Sci., 2008, vol. 8, no. 3, pp. 11–22.
[4] Kiran Sai Kumar S., Pavan Kumar Reddy V., Bharath Chowdary C. Fundamental study of underwater welding. IJATIR, 2015, vol. 7, no. 11, pp. 2076–2079.
[5] Barnabas S.G., Rajakarunakaran S., Pandian G.S. et al. Review on enhancement techniques necessary for the improvement of underwater welding. Mater. Today: Proc., 2021, vol. 45–2, pp. 1191–1195, doi: https://doi.org/10.1016/j.matpr.2020.03.725
[6] Sagara H., Nishio Y., Wada H. et al. Welding torch for underwater welding. Patent US 4029930. Appl. 02.08.1973, publ. 14.06.1977.
[7] Hamasaki M., Sakakibara J. Studies on the underwater CO2 arc welding method with a curtain nozzle. J. JWS, 1973, vol. 42, no. 9, pp. 897–906, doi: https://doi.org/10.2207/qjjws1943.42.897
[8] Hamasaki M., Sakakibara J. Studies on the underwater CO2 arc welding method with a curtain nozzle. J. JWS, 1974, vol. 43, no. 9, pp. 868–875, doi; https://doi.org/10.2207/qjjws1943.43.868
[9] Watanabe M., Hamasaki M., Sakakibara J. Underwater butt welding of mild steel with water curtain type CO2 arc welding method. Trans. Jap. Weld. Soc, 1975, vol. 6, no. 2, pp. 3–9.
[10] Рогозин Д.В., Маслов И.В. Численное моделирование формирования локальной защиты при подводной сварке с водяной завесой сопла. Сварка и диагностика, 2018, № 4, с. 34–37.
[11] Almeida D.S., Machado I.G. Development of wet underwater GMAW with local cavity process. 21 Encontro Nacional de Tecnologia de Soldagem, 1995, pp. 1–12.
[12] Nishiguch K., Matsunawa A., Tamura M. et al. Development of underwater welding with local cavity formation method. Proc. 2nd Int. Symp. Japan Welding Sec. on the Advanced Welding Technology, 1975, no. 2-2-(6), pp. 315–320.
[13] Hoffmeister H., Kuster K., Boellinghaus T. et al. Repair welding of tubular structures by an underwater low hydrogen wet fillet weld system. Proc. Welding of Tubular Structures, 1984, pp. 145–150, doi: https://doi.org/10.1016/B978-0-08-031156-2.50009-9
[14] Sakakibara J., Tateiwa F., Hamasaki M. Water curtain type underwater CO2 arc welding by using flux cored wire (the first report). J. JWS, 1974, vol. 43, no. 1, pp. 23–30, doi: https://doi.org/10.2207/qjjws1943.43.23
[15] Hamasaki M., Sakakibara J., Tateiwa F. On the curtain type CO2 arc welding using flux cored wires. J. JWS, 1974, vol. 43, no. 2, pp. 141–146, doi: https://doi.org/10.2207/qjjws1943.43.141
[16] Arata Y., Hamasaki M., Sakakibara J. Water curtain type underwater MIG arc welding (the 2nd report). J. JWS, 1977, vol. 46, no. 10, pp. 728–734, doi: https://doi.org/10.2207/qjjws1943.46.10_728
[17] Arata Y., Hamasaki M., Sakakibara J. Hydrogen content in arc atmosphere of water curtain type underwater argon arc welding. Trans. Jap. Weld. Soc., 1981, vol. 10, no. 1, pp. 19–25.
[18] Hoffmeister H., Kuster K. Process variables and properties of underwater wet shielded metal arc laboratory welds. Proc. Int. Conf. Underwater Welding. Trondheim, 1983, pp. 115–120.
[19] Hoffmeister H., Kuster K. Process variables and properties of wet underwater gas metal arc laboratory and sea welds of medium strength steels. Proc. Int. Conf. Underwater Welding. Trondheim, 1983, pp. 121–128.
[20] Arata Y., Hamasaki M., Sakakibara J. Water curtain type underwater MIG arc welding (the 1st report). J. JWS, 1977, vol. 46, no. 9, pp. 648–655, doi: https://doi.org/10.2207/qjjws1943.46.9_648
[21] Sakakibara J., Matsuoka S., Ogawa Y. Weld fumes in high pressure MIG welding. Q. J. Jpn. Weld. Soc., 1988, vol. 6, no. 4, pp. 468–473, doi: https://doi.org/10.2207/qjjws.6.468
[22] Hamasaki M., Sakakibara J., Minehisa S. et al. Automatic wet underwater welding at horizontal position of tubes using water curtain type GMA welding technique. Trans. Jap. Weld. Soc., 1978, vol. 9, no. 2, pp. 11–16.
[23] Ogawa Y., Irie T., Ono Y. et al. Effect of shielding gas on underwater CO2 welding. Proc. 76th OMAE, 1998, p. 11.
[24] Rogalski G., Labanowski J., Fydrych D. et al. Bead-on-plate welding on S235JR steel by underwater local dry chamber process. Polish Maritime Research, 2014, vol. 21, no. 2, pp. 58–64.
[25] Satoh K., Tamura M., Ohmae T. et al. Study on cooling characteristic and hardness in locally drying under water weld of mild steel and 50 kgf/ mm2 h.t. steel. J. JWS, 1981, vol. 50, no. 8, pp. 800–806.
[26] Lee K.B., Hwang S.H., Park Y.I. et al. A study on locally drying underwater welding. J. KWS, 1992, vol. 10, no. 2, pp. 51–62.
[27] Stingelin V., Budliger J.P., Katzarkoff J. et al. Underwater welding apparatus. Patent US 4172974. Appl. 01.03.1977, publ. 30.10.1979.
[28] Hamasaki M., Sakakibara J., Arata Y. Underwater MIG welding using a wire brush nozzle. Met. Constr., 1979, vol. 11, no. 6, pp. 288–289.
[29] Sakakibara J., Hamasaki M., Funamori S. et al. Study to protect shielding gas from influence of side wind using wire brush nozzle. J. JWS, 1982, vol. 51, no. 11, pp. 928–932, doi: https://doi.org/10.2207/qjjws1943.51.928
[30] Stingelin V., Budliger J.-P., Katzarkoff J. et al. Apparatus and method for creating dry underwater welds. Patent US 5981896. Appl. 26.08.1998, publ. 09.11.1999.
[31] Hamasaki M., Sakakibara J. Underwater welding of high tensile strength steel. J. JWS, 1979, vol. 48, no. 2, pp. 115–120, doi: https://doi.org/10.2207/qjjws1943.48.115
[32] Hoffmeister H., Kuster K., Schafstall H-G. Weld joint properties of medium strength steels after underwater wet MIG-welding by the water curtain process. 2nd Int. Conf. Offshore Welded Structures. London, The Welding Institute, 1983, pp. P17.1–P17.8.
[33] Satoh K., Tamura M., Ohmae T. et al. Study on improvement of locally drying underwater welding joint by retarted cooling method. J. JWS, 1982, vol. 51, no. 8, pp. 665–672, doi: https://doi.org/10.2207/qjjws1943.51.665
[34] Takahashi K., Kobayashi H., Yoneyama T. In-water laser ablation of metals by Q-switched Nd:YAG laser. Preprints of the National Meeting of JWS, vol. 66, pp. 70–71.
[35] Kajiwara J. Study on the fundament of underwater welding technology. Research Report of Shikoku Industrial Technology Institution, 0389-12161986.
[36] Morita I., Tsuchiya K., Owaki K. et al. Development of underwater Nd:YAG laser welding technology. IIW Doc. IV-768-2000.
[37] Zhang X., Ashida E., Shono S. et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding. J. Mater. Process. Technol., 2006, vol. 174, no. 1–3, pp. 34–41, doi: https://doi.org/10.1016/j.jmatprotec.2004.12.009
[38] Guo N., Fu Y., Xing X. et al. Underwater local dry cavity laser welding of 304 stainless steel. J. Mater. Process. Technol., 2018, vol. 260, pp. 146–155, doi: https://doi.org/10.1016/j.jmatprotec.2018.05.025
[39] Tamura M., Nishio Y., Wada H. Development of automatic underwater welding with local cavity formation method. Proc. Ann. Offshore Tech. Conf., 1976, pp. 333–344, doi: https://doi.org/10.4043/2646-MS
[40] Obana T., Hamada Y., Ootsuka T. et al. Development of maintenance technology with underwater TIG welding for spent fuel storage pool. Weld. Int., 2009, vol. 23, no. 5, pp. 382–396, doi: https://doi.org/10.1080/09507110802542791
[41] Ono Y., Nishida K., Tohno K. et al. Mechanized wet CO2 welding for butt joints. Proc. 16th OMAE, 1997, vol. 3, part 1-B, pp. 35–41.
[42] Irie T., Ono Y., Matsushita H. et al. Formation of local cavity by water curtain nozzle. Proc. 16th OMAE, 1997, vol. 3, part 1-B, pp. 43–50.
[43] Kitamura N., Tohno K., Nishida K. et al. Site trial of mechanized wet welding for a ‘mega-float’. Proc. 16th OMAE, 1997, vol. 6, part 1-B, pp. 23–29.
[44] Ogawa Y. Detection of wet condition for underwater local dry welding. Proc. OPEC, 1998, vol. 3, part 3, pp. 169–172.
[45] Irie T., Ono Y., Sato M. et al. Underwater butt welding down to 10 m. Proc. 17th OMAE, 1998, p. 23.
[46] Ogawa Y. Mechanization of underwater wet welding. Proc. VLFS99, 1999, vol. 2, pp. 708–716.
[47] Irie T., Nakatani T., Ono Y. et al. New underwater welding with super-water-repellent material. Proc. 20th OMAE, 2001, vol. 3, pp. 153–159.
[48] Ogawa Y. Mechanization of underwater welding and cutting for VLFS. Proc. Int. Symp. Underwater Technology, 2002, pp. 87–92, doi: https://doi.org/10.1109/UT.2002.1002395
[49] Ohmae T., Manabe Y., Nagata Y. et al. Practical application of locally drying underwater welding for steel pipes. Proc. Int. Conf. Underwater Welding. Trondheim, 1983, pp. 333–340.
[50] Hamasaki M., Murao Y. Underwater gas cutting (first report). Trans. Jap. Weld. Soc., 1978, vol. 9, no. 2, pp. 17–22.