Применение метода конечного элемента для оценки нижней границы предела приспособляемости конструкций при одновременном воздействии механических и тепловых нагрузок
Авторы: Кураева Я.В., Клебанов Я.М. | Опубликовано: 29.07.2013 |
Опубликовано в выпуске: #1(634)/2013 | |
Раздел: Транспортное и энергетическое машиностроение | |
Ключевые слова: метод конечных элементов, теорема Мелана, предел приспособляемости |
Рассмотрен численный метод оценки нижней границы предела приспособляемости конструкций, основанный на использовании теоремы Мелана. Применение метода демонстрируется на примере толстостенного сферического сосуда, подвергающегося повторным воздействиям внутреннего давления и неоднородного по радиусу температурного поля. Предлагаемый метод позволяет получать достаточно точную оценку нижней границы приспособляемости.
Литература
[1] Bree J. Elastic plastic behavior of thin tubes subjected to internal pressure and intermittent high heat fluxes with application to fast nuclear reactor fuel elements // Journal of Strain Analysis for Engineering Design. 1967. Vol. 2, 3. P. 226—238.
[2] Chinh P.D. Shakedown theory for elastic-perfectly plastic bodies revisited // International Journal of Mechanical Sciences. 2003. Vol. 45. P. 1011—1027.
[3] Mahbadi H., Eslami M.R. Cyclic loading of beams based on the Prager and Frederick—Armstrong kinematic hardening models // International Journal of Mechanical Sciences. 2002. Vol. 44. P. 859—879.
[4] Leckie F.A., Penny R.K. Shakedown pressure for radial nozzles in spherical pressure vessels // International Journal of Solids and Structures. 1967. Vol. 3. P. 743—755.
[5] Liu Y.H., Carvelli V., Maier G. Integrity assessment of defective pressurized pipelines by direct simplified methods // International Journal of Pressure Vessels and Piping. 1997. Vol. 74. P. 49—57.
[6] Vu D.K., Yan A.M., Nguyen-Dang H. A primal—dual algorithm for shakedown analysis of structures // Computer Methods in Applied Mechanics and Engineering. 2004. Vol. 193. P. 4663—4674.
[7] Staat M., Heitzer M. LISA a European Project for FEM-based Limi t and Shakedown Analys i s // Nuclear Engineering and Design. 2001. Vol. 206. P. 151—166.
[8] Mackenzie D., Boyle J.T., Hamilton R. Elastic compensation method in shell-based design by analysis // International Journal of Pressure Vessels and Piping. 1996. Vol. 338. P. 203—208.
[9] Mackenzie D., Boyle J.T., Hamilton R. The elastic compensation method for limit and shakedown analysis: a review // Journal of Strain Analysis for Engineering Design. 2000. Vol. 3. P. 171—188.
[10] Chen H.F., Ponter A.R.S. Shakedown and limit analyses for 3-D structures using the Linear Matching Method // International Journal of Pressure Vessels and Piping. 2001. Vol. 78. P. 443—451.
[11] Chen H.F., Ponter A.R.S. Method for the Evaluation of a Ratchet Limit and the Amplitude of Plastic Strain for Bodies Subjected to Cycl ic Loading // European Journal of Mechanics — A/Solids. 2001. Vol. 20. P. 555—571.
[12] Chen H.F., Ponter A.R.S., Ainsworth R.A. The Linear Matching Method applied to the High Temperature Life Integrity of Structures, Part 1: Assessments involving Constant Residual Stress Fields // International Journal of Pressure Vessels and Piping. 2006. Vol. 83. P. 123—135.
[13] Chen H.F., Ponter A.R.S., Ainsworth R.A. The Linear Matching Method applied to the High Temperature Life Integrity of Structures, Part 2: Assessments beyond shakedown involving Changing Residual Stress Fields // International Journal of Pressure Vessels and Piping. 2006. Vol. 83. P. 136—147.
[14] Chen H.F., Ponter A.R.S. Linear Matching Method on the evaluation of plastic and creep behaviours for bodies subjected to cyclic thermal and mechanical loading // International Journal for Numerical Methods in Engineering. 2006. Vol. 68. P. 13—32.
[15] Chen H.F. Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress // Journal of Pressure Vessel Technology. 2010. Vol. 132. P. 1–8.
[16] Kalnins A. Plastic analysis in pressure vessel design-role of limit analysis and cyclic loading // ASME PVP conference. Seattle, USA 2000. P. 23—29.
[17] Mackenzie D., Boyle J.T. The elastic compensation method for limit and shakedown analysis: a review // Trans mech., J. Strain Anal. Eng. Des. 2000. Vol. 35. P. 171—188.
[18] Chen Y., Ponter A.R.S. A method for the evaluation of ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading // European Journal of Mechanics. A/Solids. 2001. Vol. 20. P. 555—571.
[19] Ponter A.R.S., Chen H. A minimum theorem for cyclic load in excess of shakedown, with application to the evaluation of a ratchet limit // European Journal of Mechanics — A/Solids. 2001. Vol. 20. P. 539—553.
[20] Casciaro R., Garcea G. An iterative method for shakedown analysis // Computer Methods in Applied Mechanics and Engineering. 2002. Vol. 191. P. 49—50.
[21] Belytschko T. Plane stress shakedown analysis by finite elements // International Journal for Numerical Methods in Engineering. 1972. Vol. 14. P. 35—40.
[22] Corradi L., Zavelani A. A linear programming approach to shakedown analysis of structures // Computer Methods in Applied Mechanics and Engineering. 1974. Vol. 3. P. 37—53.
[23] Preiss P. On the shakedown analysis of nozzles using elasto-plastic FEA // International Journal of Pressure Vessels and Piping. 1999. Vol. 76. P. 421—434.
[24] Muscat M., Hamilton R. Elastic shakedown in pressur ecomponentsundernon - proportionalloading // ASME, PVP 2002 Conference. Vancouver, BC Canada. 2002. Vol. 1522. P. 437—453.
[25] Muscat M., Mackenzie D., Hamil ton R. Evaluat ing shakedown under propor t ional loading by non- linear static analysis // Computers and Structures. 2003. Vol. 82. P. 1727—1737.
[26] Гохфельд Д.А., Чернявский О.Ф. Несущая способность в условиях теплосмен. М.: Машиностроение, 1970. 256 с.27. Гохфельд Д.А, Чернявский О.Ф. Несущая способность при повторных нагружениях. М.: Машиностроение, 1979. 263 с.