Исследование капиллярных фазоразделителей для топливных баков жидкостных ракетных двигателей при испарении криогенных компонентов
Авторы: Авраамов Н.И., Пелевин Ф.В., Сапожников В.Б., Синцов А.Л. | Опубликовано: 29.10.2015 |
Опубликовано в выпуске: #10(667)/2015 | |
Раздел: Авиационная и ракетно-космическая техника | |
Ключевые слова: жидкостный ракетный двигатель, многократный запуск, внутрибаковое устройство, капиллярный фазоразделитель |
Устойчивое функционирование ракетных двигателей связано, в числе других факторов, с непрерывной подачей компонентов топлива в магистрали к двигательной установке без нарушения сплошности потока. Это условие актуально для летательных аппаратов, работающих на криогенных компонентах, так как в процессе их испарения, возможно нарушение сплошности. Одним из перспективных технических решений задачи отбора топлива из бака без газовых включений является применение капиллярных заборных устройств. Вместе с тем при функционировании капиллярного фазоразделителя (КФР) в баках с криогенными компонентами топлива на режимах выдачи и хранения могут возникнуть ситуации, когда существенное воздействие на работу системы оказывают процессы испарения. Эти процессы изучены недостаточно. Представлена упрощенная схема установки для определения влияния испарения на работу КФР, дано описание ее основных блоков. Предложены методики определения относительной площади поверхности испарения жидкости в КФР, параметров свободноконвективного испарения жидкости из сетчатых фазоразделителей плоской и цилиндрической формы.
Литература
[1] Багров В.В., Курпатенков А.В., Поляев В.М., Синцов А.Л., Сухоставец В.Ф. Капиллярные системы отбора жидкости из бака космических аппаратов. Москва, УНПЦ ЭНЕРГОМАШ, 1997. 328 с.
[2] Диев М.Д., Пылаев А.М. Исследование работы топливного бака космической станции МИР с бинарным двухфазным вытеснением. Труды Второй РНКТ, Москва, 1998, т. 1, с. 161–164.
[3] Новиков А.В., Синцов А.Л., Антонов Ю.В. Комплексные исследования капиллярных систем отбора топлива. Ракетно-космические двигательные установки. Сб. тез. Всерос. науч.-техн. конф., Москва, ИИУ МГОУ, 2013, с. 114–116.
[4] Леонтьев А.И, Пилюгин Н.Н., Полежаев Ю.В., Поляев В.М., ред. Научные основы технологий XXI века. Москва, УНПЦ ЭНЕРГОМАШ, 2000. 136 с.
[5] Сапожников В.Б., Партола И.С., Корольков А.В. Теоретические основы разработки и экспериментальной отработки капиллярных заборных устройств с минимальными остатками топлива в двигательных установках РН, РБ и КА. Науч.-техн. разработки ОКБ-23 — КБ «Салют». Сб. статей, Москва, Воздушный транспорт, 2006, с. 313–319.
[6] Корольков А.В., Меньшиков В.А., Партола И.С., Сапожников В.Б. Математическая модель капиллярного заборного устройства торового бака. Вестник Московского государственного университета леса — Лесной вестник, 2007, № 2, с. 35–39.
[7] Сапожников В.Б., Крылов В.И., Новиков Ю.М., Ягодников Д.А. Наземная отработка капиллярных фазоразделителей на основе комбинированных пористо-сетчатых материалов для топливных баков жидкостных ракетных двигателей верхних ступеней ракет-носителей, разгонных блоков и космических аппаратов. Тр. МГТУ им. Н.Э. Баумана. Теория и практика современного ракетного двигателестроения. Сб. статей, 2013, № 607, с. 7–23.
[8] Сапожников В.Б., Большаков В.А., Новиков Ю.М., Корольков А.В., Константинов С.Б., Мартынов М.Б. Оценка эффективности использования капиллярных заборных устройств на основе комбинированных пористо-сетчатых материалов для сепарации газожидкостных смесей в топливных баках двигательных установок космических аппаратов. Ракетно-космические двигательные установки. Матер. Всерос. науч.-техн. конф., Москва, Изд-во МГТУ имени Н.Э. Баумана, 2010, с. 18.
[9] Новиков Ю.М., Большаков В.А., Спиридонов В.С., Мартынов М.Б., Константинов С.Б., Сапожников В.Б. Модель внутрибакового устройства капиллярного типа из КПСМ для топливных баков ЖРДУ верхних ступеней ракет-носителей, разгонных блоков и космических аппаратов как пример решения сложных системных задач при разработке и изготовлении перспективных конструкций. Ракетно-космические двигательные установки. Матер. Всерос. науч.-техн. конф., Москва, Изд-во МГТУ им. Н.Э. Баумана, 2013, c. 15–17.
[10] Новиков Ю.М., Большаков В.А., Партола И.С. Первая длинномерная конструкция капиллярного заборного устройства из КПСМ: подтверждение надежности и высокой эффективности по результатам эксплуатации в составе дополнительного топливного бака разгонного блока «Бриз-М» ракетного космического комплекса «Протон-М/Бриз-М». Ракетно-космические двигательные установки. Матер. Всерос. науч.-техн. конф., Москва, Изд-во МГТУ им. Н.Э. Баумана. 2013, с. 17–19.