Влияние технологических параметров на структуру металла изделий, полученных методом прямого лазерного выращивания из титанового порошка ВТ6
Авторы: Ронжин Д.А., Григорьянц А.Г., Холопов А.А. | Опубликовано: 02.09.2022 |
Опубликовано в выпуске: #9(750)/2022 | |
Раздел: Машиностроение и машиноведение | Рубрика: Технология и оборудование механической и физико-технической обработки | |
Ключевые слова: лазерное выращивание, титановый сплав, твердость, микроструктура, порошковая наплавка |
Прямое лазерное выращивание — эффективный подход к производству или ремонту металлических изделий, — представляющий собой послойное создание трехмерного твердого объекта. Структура наплавленного металла оказывает наибольшее влияние на механические свойства выращенных деталей, поэтому важно определить особенности формирования их микроструктуры. Выполнен анализ микроструктуры наплавленных на подложку образцов сплава ВТ6, изготовленную методом поковки из титанового сплава ВТ6. При разных режимах наплавки и последующей термической обработке получены образцы с различными структурами. Для всех режимов определены характерные особенности формирования микроструктуры. Исследовано влияние термообработки на структуру образцов после лазерной наплавки в исходном состоянии и после термообработки. Полученные результаты могут быть использованы для снижения затрат на ремонт и изготовление деталей из титановых сплавов в газотурбинных двигателях.
Литература
[1] Turichin G.A., Somonov V.V., Babkin K.D. et al. High-speed direct laser deposition: technology, equipment and materials. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 125, art. 012009, doi: https://doi.org/10.1088/1757-899X/125/1/012009
[2] Turichin G.A., Klimova O.G., Babkin K.D. et al. Effect of thermal and diffusion processes on formation of the structure of weld metal in laser welding of dissimilar materials. Met. Sci. Heat Treat., 2014, vol. 55, no. 9–10, pp. 569–574, doi: https://doi.org/10.1007/s11041-014-9671-7
[3] Ravi G.A., Dance C., Dilworth S. et al. Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compd., 2015, vol. 629, pp. 351–361, doi: https://doi.org/10.1016/j.jallcom.2014.12.234
[4] Rauch E., Unterhofer M., Dallasega P. Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems. Manuf. Lett., 2018, vol. 15-B, pp. 126–131, doi: https://doi.org/10.1016/j.mfglet.2017.12.011
[5] Piili H., Happonen A., Väistö T. et al. Cost estimation of laser additive manufacturing of stainless steel. Phys. Procedia, 2015, vol. 78, pp. 388–396, doi: https://doi.org/10.1016/j.phpro.2015.11.053
[6] Gu D. New metallic materials development by laser additive manufacturing. In: Laser surface engineering. Woodhead, 2015, pp. 163–180, doi: https://doi.org/10.1016/B978-1-78242-074-3.00007-6
[7] Dutta B., Palaniswamy S., Choi J. et al. Additive manufacturing by direct metal deposition. Adv. Mater. Process., 2011, vol. 169, no. 5, pp. 33–36.
[8] Shamsaei N., Yadollahi A., Bian L., et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf., 2015, vol. 8, pp. 12–35, doi: https://doi.org/10.1016/j.addma.2015.07.002
[9] Cheikh H.E., Courant B., Branchu S. et al. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures. Opt. Lasers Eng., 2012, vol. 50, no. 21, pp. 1779–1784, doi: https://doi.org/10.1016/j.optlaseng.2012.07.002
[10] Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz., 2017, vol. 60, no. 5, pp. 677–688, doi: https://doi.org/10.1016/j.bushor.2017.05.011
[11] DebRoy T., Wei H.L., Zuback J.S. et al. Additive manufacturing of metallic components. Process, structure and properties. Prog. Mater. Sci., 2018, vol. 92, pp. 112–224, doi: https://doi.org/10.1016/j.pmatsci.2017.10.001
[12] Turichin G.A., Travyanov A.Y., Petrovskiy P.V. et al. Prediction of solidification behaviour and microstructure of Ni based alloys obtained by casting and direct additive laser growth. Mater. Sci. Technol., 2016, vol. 32, no. 8, pp. 746–751, doi: https://doi.org/10.1179/1743284715Y.0000000134
[13] Uhlmann E., Kersting R., Klein T.B. et al. Additive manufacturing of titanium alloy for aircraft components. Procedia CIRP, 2015, vol. 35, pp. 55–60, doi: https://doi.org/10.1016/j.procir.2015.08.061
[14] Singha P., Pungotra H., Kalsi N.S. On the characteristics of titanium alloys for the aircraft applications. Mater. Today: Proc., 2017, vol. 4, no. 8, pp. 8971–8982, doi: https://doi.org/10.1016/j.matpr.2017.07.249
[15] Semiatin S.L., Kobryn P.A., Roush E.D. et al. Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metall. Mater. Trans. A, 2001, vol. 32, no. 7, pp. 1801–1811, doi: https://doi.org/10.1007/s11661-001-0156-0
[16] Wu X., Sharman R., Mei J. et al. Direct laser fabrication and microstructure of a burn-resistant Ti alloy. Mater. Des., 2002, vol. 23, no. 3, pp. 239–247, doi: https://doi.org/10.1016/S0261-3069(01)00086-3
[17] Wu X., Mei J. Near net shape manufacturing of components using direct laser fabrication technology. J. Mater. Process. Technol., 2003, vol. 135, no. 2–3, pp. 266–270, doi: https://doi.org/10.1016/S0924-0136(02)00906-8
[18] Wu X., Sharman R., Mei J. et al. Microstructure and properties of a laser fabricated burn-resistant Ti alloy. Mater. Des., 2004, vol. 25, no. 2, pp. 103–109, doi: https://doi.org/10.1016/j.matdes.2003.10.004
[19] Wu X., Liang J., Mei J. et al. Microstructures of laser-deposited Ti–6Al– 4V. Mater. Des., 2004, vol. 25, no. 2, pp. 137–144, doi: https://doi.org/10.1016/j.matdes.2003.09.009
[20] Kelly S.M., Kampe S.L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metall. Mater. Trans. A, 2004, vol. 35, no. 6, pp. 1861–1867, doi: https://doi.org/10.1007/s11661-004-0094-8
[21] Wang F., Mei J., Wu X. Microstructure study of direct laser fabricated Ti alloys using powder and wire. Appl. Surf. Sci., 2006, vol. 253, no. 3, pp. 1424–1430, doi: https://doi.org/10.1016/j.apsusc.2006.02.028
[22] Dinda G.P., Song L., Mazumder J. Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall. Mater. Trans. A, 2008, vol. 39, pp. 2914–2922, doi: https://doi.org/10.1007/s11661-008-9634-y
[23] Alcisto J., Enriquez A., Garcia H. et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V. J. of Materi. Eng. and Perform., 2011, vol. 20, no. 2, pp. 203–212, doi: https://doi.org/10.1007/s11665-010-9670-9
[24] Qiu C., Ravi G.A., Dance C. et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J. Alloys Compd., 2015, vol. 629, pp. 351–361, doi: https://doi.org/10.1016/j.jallcom.2014.12.234
[25] Liu Q., Wang Y., Zheng H. et al. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti-6Al-4V alloy. Mater. Sci. Eng., 2016, vol. 660, pp. 24–33, doi: https://doi.org/10.1016/j.msea.2016.02.069
[26] Ravi G.A., Qiu C., Attallah M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Mater. Lett., 2016, 179, pp. 104–108, doi: https://doi.org/10.1016/j.matlet.2016.05.038
[27] Rashkovets M., Nikulina A., Turichin G. et al. Microstructure and phase composition of Ni-based alloy obtained by high-speed direct laser deposition. J. of Materi. Eng. and Perform, 2018, vol. 27, no. 12, pp. 6398–6406, doi: https://doi.org/10.1007/s11665-018-3722-y
[28] Isakov A.E., Matveeva V.A., Chukaeva M.A. Development of chemosorbent based on metallic waste for cleaning mine water from molybdenum. J. Ecol. Eng., 2018, vol. 19, no. 1, pp. 42–47, doi: https://doi.org/10.12911/22998993/79454
[29] Turichin G.A., Klimova-Korsmik O.G., Gushchina M.O. et al. Features of structure formation in ?+ ? titanium alloys. Procedia CIRP, 2018, vol. 74, pp. 188–191, doi: https://doi.org/10.1016/j.procir.2018.08.091
[30] Shaboldo O.P., Mazurov S.A., Skotnikova M.A. et al. Effect of preliminary quenching on the efficiency of hardening heat treatment of cold- deformed ?-titanium alloy TS6. Met. Sci. Heat. Treat., 2017, vol. 59, no. 5–6, pp. 370–376, doi: https://doi.org/10.1007/s11041-017-0158-1
[31] Григорьянц А.Г., Ставертий А.Я., Третьяков Р.С. Пятикоординатный комплекс для выращивания деталей методом коаксиального лазерного плавления порошковых материалов. Технология машиностроения, 2015, № 10, с. 22–29.
[32] Zhai Y., Galarraga H., Lados D.A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Eng. Fail. Anal., 2016, vol. 69, pp. 3–14, doi: https://doi.org/10.1016/j.engfailanal.2016.05.036
[33] Carroll B.E., Palmer T.A., Beese A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater., 2015, vol. 87, pp. 309–320, doi: https://doi.org/10.1016/j.actamat.2014.12.054
[34] Zhai Y., Galarraga H., Lados D.A. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng., 2015, vol. 114, pp. 658–666.