Influence of technological parameters on the metal structure of produced by direct metal deposition vt6 titanium powder
Authors: Ronzhin D.A., Grigoriyants A.G., Kholopov A.A. | Published: 02.09.2022 |
Published in issue: #9(750)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment for Mechanical and Physico-Technical Processing | |
Keywords: laser deposition, titanium alloy, hardness, microstructure, powder deposition |
Direct laser deposition is an efficient approach to manufacturing or repairing a range of metal goods. The process involves creating a three-dimensional solid object layer by layer. The weld metal structure primarily affects mechanical properties of the deposited parts, making it important to establish the specifics of microstructure formation. We analysed the microstructure of VT6 alloy samples deposited on a substrate forged from the same VT6 titanium alloy. Different modes of deposition and subsequent heat treatment resulted in samples with differing structures. We established characteristic features of microstructure formation for all modes. We investigated the effect of heat treatment on the sample structure after laser welding in the initial state and after heat treatment. The results obtained may help reduce the cost of repairing and manufacturing titanium alloy parts for gas turbine engines.
References
[1] Turichin G.A., Somonov V.V., Babkin K.D. et al. High-speed direct laser deposition: technology, equipment and materials. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 125, art. 012009, doi: https://doi.org/10.1088/1757-899X/125/1/012009
[2] Turichin G.A., Klimova O.G., Babkin K.D. et al. Effect of thermal and diffusion processes on formation of the structure of weld metal in laser welding of dissimilar materials. Met. Sci. Heat Treat., 2014, vol. 55, no. 9–10, pp. 569–574, doi: https://doi.org/10.1007/s11041-014-9671-7
[3] Ravi G.A., Dance C., Dilworth S. et al. Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compd., 2015, vol. 629, pp. 351–361, doi: https://doi.org/10.1016/j.jallcom.2014.12.234
[4] Rauch E., Unterhofer M., Dallasega P. Industry sector analysis for the application of additive manufacturing in smart and distributed manufacturing systems. Manuf. Lett., 2018, vol. 15-B, pp. 126–131, doi: https://doi.org/10.1016/j.mfglet.2017.12.011
[5] Piili H., Happonen A., Väistö T. et al. Cost estimation of laser additive manufacturing of stainless steel. Phys. Procedia, 2015, vol. 78, pp. 388–396, doi: https://doi.org/10.1016/j.phpro.2015.11.053
[6] Gu D. New metallic materials development by laser additive manufacturing. In: Laser surface engineering. Woodhead, 2015, pp. 163–180, doi: https://doi.org/10.1016/B978-1-78242-074-3.00007-6
[7] Dutta B., Palaniswamy S., Choi J. et al. Additive manufacturing by direct metal deposition. Adv. Mater. Process., 2011, vol. 169, no. 5, pp. 33–36.
[8] Shamsaei N., Yadollahi A., Bian L., et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf., 2015, vol. 8, pp. 12–35, doi: https://doi.org/10.1016/j.addma.2015.07.002
[9] Cheikh H.E., Courant B., Branchu S. et al. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures. Opt. Lasers Eng., 2012, vol. 50, no. 21, pp. 1779–1784, doi: https://doi.org/10.1016/j.optlaseng.2012.07.002
[10] Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz., 2017, vol. 60, no. 5, pp. 677–688, doi: https://doi.org/10.1016/j.bushor.2017.05.011
[11] DebRoy T., Wei H.L., Zuback J.S. et al. Additive manufacturing of metallic components. Process, structure and properties. Prog. Mater. Sci., 2018, vol. 92, pp. 112–224, doi: https://doi.org/10.1016/j.pmatsci.2017.10.001
[12] Turichin G.A., Travyanov A.Y., Petrovskiy P.V. et al. Prediction of solidification behaviour and microstructure of Ni based alloys obtained by casting and direct additive laser growth. Mater. Sci. Technol., 2016, vol. 32, no. 8, pp. 746–751, doi: https://doi.org/10.1179/1743284715Y.0000000134
[13] Uhlmann E., Kersting R., Klein T.B. et al. Additive manufacturing of titanium alloy for aircraft components. Procedia CIRP, 2015, vol. 35, pp. 55–60, doi: https://doi.org/10.1016/j.procir.2015.08.061
[14] Singha P., Pungotra H., Kalsi N.S. On the characteristics of titanium alloys for the aircraft applications. Mater. Today: Proc., 2017, vol. 4, no. 8, pp. 8971–8982, doi: https://doi.org/10.1016/j.matpr.2017.07.249
[15] Semiatin S.L., Kobryn P.A., Roush E.D. et al. Plastic flow and microstructure evolution during thermomechanical processing of laser-deposited Ti-6Al-4V preforms. Metall. Mater. Trans. A, 2001, vol. 32, no. 7, pp. 1801–1811, doi: https://doi.org/10.1007/s11661-001-0156-0
[16] Wu X., Sharman R., Mei J. et al. Direct laser fabrication and microstructure of a burn-resistant Ti alloy. Mater. Des., 2002, vol. 23, no. 3, pp. 239–247, doi: https://doi.org/10.1016/S0261-3069(01)00086-3
[17] Wu X., Mei J. Near net shape manufacturing of components using direct laser fabrication technology. J. Mater. Process. Technol., 2003, vol. 135, no. 2–3, pp. 266–270, doi: https://doi.org/10.1016/S0924-0136(02)00906-8
[18] Wu X., Sharman R., Mei J. et al. Microstructure and properties of a laser fabricated burn-resistant Ti alloy. Mater. Des., 2004, vol. 25, no. 2, pp. 103–109, doi: https://doi.org/10.1016/j.matdes.2003.10.004
[19] Wu X., Liang J., Mei J. et al. Microstructures of laser-deposited Ti–6Al– 4V. Mater. Des., 2004, vol. 25, no. 2, pp. 137–144, doi: https://doi.org/10.1016/j.matdes.2003.09.009
[20] Kelly S.M., Kampe S.L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization. Metall. Mater. Trans. A, 2004, vol. 35, no. 6, pp. 1861–1867, doi: https://doi.org/10.1007/s11661-004-0094-8
[21] Wang F., Mei J., Wu X. Microstructure study of direct laser fabricated Ti alloys using powder and wire. Appl. Surf. Sci., 2006, vol. 253, no. 3, pp. 1424–1430, doi: https://doi.org/10.1016/j.apsusc.2006.02.028
[22] Dinda G.P., Song L., Mazumder J. Fabrication of Ti-6Al-4V scaffolds by direct metal deposition. Metall. Mater. Trans. A, 2008, vol. 39, pp. 2914–2922, doi: https://doi.org/10.1007/s11661-008-9634-y
[23] Alcisto J., Enriquez A., Garcia H. et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V. J. of Materi. Eng. and Perform., 2011, vol. 20, no. 2, pp. 203–212, doi: https://doi.org/10.1007/s11665-010-9670-9
[24] Qiu C., Ravi G.A., Dance C. et al. Fabrication of large Ti-6Al-4V structures by direct laser deposition. J. Alloys Compd., 2015, vol. 629, pp. 351–361, doi: https://doi.org/10.1016/j.jallcom.2014.12.234
[25] Liu Q., Wang Y., Zheng H. et al. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti-6Al-4V alloy. Mater. Sci. Eng., 2016, vol. 660, pp. 24–33, doi: https://doi.org/10.1016/j.msea.2016.02.069
[26] Ravi G.A., Qiu C., Attallah M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Mater. Lett., 2016, 179, pp. 104–108, doi: https://doi.org/10.1016/j.matlet.2016.05.038
[27] Rashkovets M., Nikulina A., Turichin G. et al. Microstructure and phase composition of Ni-based alloy obtained by high-speed direct laser deposition. J. of Materi. Eng. and Perform, 2018, vol. 27, no. 12, pp. 6398–6406, doi: https://doi.org/10.1007/s11665-018-3722-y
[28] Isakov A.E., Matveeva V.A., Chukaeva M.A. Development of chemosorbent based on metallic waste for cleaning mine water from molybdenum. J. Ecol. Eng., 2018, vol. 19, no. 1, pp. 42–47, doi: https://doi.org/10.12911/22998993/79454
[29] Turichin G.A., Klimova-Korsmik O.G., Gushchina M.O. et al. Features of structure formation in ?+ ? titanium alloys. Procedia CIRP, 2018, vol. 74, pp. 188–191, doi: https://doi.org/10.1016/j.procir.2018.08.091
[30] Shaboldo O.P., Mazurov S.A., Skotnikova M.A. et al. Effect of preliminary quenching on the efficiency of hardening heat treatment of cold- deformed ?-titanium alloy TS6. Met. Sci. Heat. Treat., 2017, vol. 59, no. 5–6, pp. 370–376, doi: https://doi.org/10.1007/s11041-017-0158-1
[31] Grigor’yants A.G., Stavertiy A.Ya., Tret’yakov R.S. Five-axis system for the parts growing by coaxial laser melting of powder materials. Tekhnologiya mashinostroeniya, 2015, no. 10, pp. 22–29.
[32] Zhai Y., Galarraga H., Lados D.A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM. Eng. Fail. Anal., 2016, vol. 69, pp. 3–14, doi: https://doi.org/10.1016/j.engfailanal.2016.05.036
[33] Carroll B.E., Palmer T.A., Beese A.M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater., 2015, vol. 87, pp. 309–320, doi: https://doi.org/10.1016/j.actamat.2014.12.054
[34] Zhai Y., Galarraga H., Lados D.A. Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Eng., 2015, vol. 114, pp. 658–666.