Simulation of the Separation of a Manned Spacecraft from Large Orbital Space Stations
Authors: Anfalov A.S., Bogomolov N.V., Borzykh S.V. | Published: 31.05.2018 |
Published in issue: #5(698)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aerodynamics and Heat Transfer Processes in Aircraft | |
Keywords: separation process, manned spacecraft, orbital station, off-nominal situation, emergency situation, relative motion |
Ensuring the safety of the crewmembers is the key element in any manned space program. When a manned spacecraft undocks and departs the space station, the safety is primarily understood as a collision-free process. In this paper, an approach to the safety evaluation of manned spacecraft separation from large-sized orbital stations is considered. Equations are presented that fully describe the dynamics and kinematics of the separated space objects as a system of rigid bodies performing a relative motion under the influence of power factors. The simulation results of the Soyuz spacecraft separation from the International Space Station in emergency cases caused by certain vehicle engines failures are presented. A conclusion is made about the workability of this approach to identify critical failures and the restrictions that they impose on the possible configuration of the station before spacecraft undocking.
References
[1] Anfalov A.S., Bogomolov N.V., Borzykh S.V. Algoritmy otdeleniia transportnogo pilotiruemogo korablia «Soyuz MS» ot Mezhdunarodnoi kosmicheskoi stantsii [Separation Algorithms of «Soyuz MS» Spacecraft from the International Space Station]. Kosmonavtika i raketostroenie [Cosmonautics and rocket science]. 2017, no. 1, pp. 24–29.
[2] Liubinskii V.E., Solov’ev V.A. Obespechenie bezopasnosti ekipazhei kosmicheskikh apparatov pri upravlenii ikh poletom [Ensuring the Safety of a Spacecraft Crew during the Flight Management]. Kosmonavtika i raketostroenie [Cosmonautics and rocket science]. 2015, no. 1, pp. 195–201.
[3] Bakulin V.N., Borzykh S.V., Anfalov A.S., Bogomolov N.V. Analiz prichin i posledstvii neshtatnykh i avariinykh situatsii, trebuiushchikh ekstrennoi evakuatsii ekipazha orbital’noi stantsii [Analysis of the causes and consequences of abnormal and emergency situations that require emergency evacuation of the crew of the space station]. Materialy 20 Mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam [Proceedings of the 20 anniversary international conference on computational mechanics and modern applied software systems]. Alushta, Crimea, 24–31 May 2017, Moscow, MAI publ., 2017, pp. 721–723.
[4] Beregovoi G.T., Iaropolov V.I., Baranetskii I.I., Vysokanov V.A., Shatrov Ia.T. Spravochnik po bezopasnosti kosmicheskikh poletov [Space flights safety handbook]. Moscow, Mashinostroenie publ., 1989. 336 p.
[5] Anfalov A.S., Borzykh S.V., Kokushkin V.V., Petrov N.K., Khomiakov M.K. Analiz otdeleniia korablei-spasatelei ot nestabilizirovannoi Mezhdunarodnoi kosmicheskoi stantsii [Analysis of Rescue Vehicle Separation from Non-stabilized International Space Station]. Kosmonavtika i raketostroenie [Cosmonautics and rocket science]. 2008, no. 4, pp. 107–117.
[6] Anfalov A.S., Khomiakov M.K., Borzykh S.V., Petrov N.K. Issledovanie dinamiki protsessa otdeleniia kosmicheskikh korablei «Soyuz» ot nestabilizirovannoi Mezhdunarodnoi kosmicheskoi stantsii [Study of the dynamics of Soyuz spacecraft separation from the nonstabilized International Space Station]. Raketno-kosmicheskaia tekhnika. Trudy RKK «Energiia» im. S.P. Koroleva [Rocket and space technology. Proceedings of RSC Energia named after S.P. Korolev]. 2008, ser. 12, is. 1, pp. 158–167.
[7] Anfalov A.S., Bogomolov N.V., Borzykh S.V., Khomiakov M.K. Issledovanie bezopasnosti protsessa ekstrennogo otdeleniia korablei serii «Soyuz» ot nestabilizirovannoi Mezhdunarodnoi kosmicheskoi stantsii pozdnikh konfiguratsii [Safety analysis of Soyuz spacecraft emergency undocking from the unstabilized International Space Station of late configurations]. Mekhanika i matematicheskoe modelirovanie v tekhnike. Mater. 2 Vseross. konf. [Mechanics and mathematical modeling in engineering. The materials of the 2nd All-Russian conference]. Moscow, 22–23 November 2017, Moscow, Bauman Press, 2017, pp. 117–120.
[8] Anfalov A.S., Bogomolov N.V., Borzykh S.V. O bezudarnosti protsessa otdeleniia korablia «Soiuz» ot neupravliaemoi Mezhdunarodnoi kosmicheskoi stantsii [About shocklessness of Soyuz spacecraft separation from uncontrolled International Space Station]. Fundamental’nye i prikladnye zadachi mekhaniki. Tez. dokl. Mezhdunar. nauch. konf. [Fundamental and applied problems of mechanics. Abstracts of the international scientific conference]. Moscow, 24–27 October 2017, Moscow, Bauman Press, 2017, pp. 109–110.
[9] Bergez G., Mongrard O., Santini C., Lainé R. ATV Separation and Departure Strategy from Uncontrolled International Space Station. Proceedings of the 18th International Symposium on Space Flight Dynamics, Munich, Germany, 11–15 October 2004, DLR’s German Space Operations Center, ESA’s European Space Operations Centre, 2004, pp. 85–90.
[10] Bakulin D.V., Borzykh S.V. Issledovanie dinamiki protsessa otdeleniia kosmicheskogo apparata, soderzhashchego uprugie element [Investigation of dynamics of the separation process of a spacecraft containing elastic elements]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo [Vestnik of Lobachevsky University of Nizhni Novgorod]. 2011, no. 4, pp. 1380–1382.
[11] Kolesnikov K.S., Kokushkin V.V., Borzykh S.V., Pankova N.V. Raschet i proektirovanie sistem razdeleniia stupenei raket [Calculation and design of rocket stage separation systems]. Moscow, Bauman Press, 2006. 374 p.
[12] Anshakov G.P., Aslanov V.S., Balakin V.L., Doroshin A.V., Kvashin A.S., Kruglov G.E., Iudintsev V.V. Dinamicheskie protsessy v raketno-kosmicheskikh sistemakh [Dynamic processes in rocket-space systems]. Vestnik SGAU [Vestnik of Samara University. Aerospace and Mechanical Engineering]. 2003, no. 1, pp. 7–22.
[13] Ivanov D.S., Trofimov S.P., Shirobokov M.G. Chislennoe modelirovanie orbital’nogo i uglovogo dvizheniia kosmicheskikh apparatov [Numerical simulation of orbital and angular motion of spacecraft]. Moscow, IPM im. M.V. Keldysha publ., 2016. 118 p.
[14] Chernyshov A.D., Chernyshov O.A., Goryainov V.V. Application of the fast expansion method for spacecraft trajectory calculation. Russian Aeronautics, 2015, vol. 58, no. 2, pp. 180–186.
[15] Chernyshov A.D., Goriainov V.V., Chernyshov O.A. Calculation of flight of a spacecraft on the exoatmospheric portion of the trajectory by the method rapid expansions. Theoretical & Applied Science, 2014, no. 6, pp. 1–4.
[16] Platonov V.N. Odnovremennoe upravlenie dvizheniem tsentra mass i vokrug tsentra mass pri manevrakh kosmicheskikh apparatov na geostatsionarnoi i vysokoellipticheskikh orbitakh s ispol’zovaniem elektroreaktivnykh dvigatelei [Simultaneous control of centre of mass and around centre of mass motion during spacecraft maneuvers performance on geosynchronous and high elliptic orbits using electric rocket engines]. Kosmicheskaia tekhnika i tekhnologii [Space technique and technologies]. 2013, no. 1, pp. 56–65.
[17] On-Orbit Assembly, Modeling, and Mass Properties Data Book. Available at: http://athena.ecs.csus.edu/~grandajj/ME296M/RevAB_Volume%20II%20Signed_updated.pdf (accessed 7 February 2018).
[18] Johnson N.L. The new jettison policy for the International Space Station. Advances in Space Research, 2006, vol. 38, no. 9, pp. 2077–2083.