Evaluation of the Applicability of Different Equations of State of the Real Gas for Ethylene
Authors: Kukshinov N.V., Mamyshev D.L. | Published: 31.05.2018 |
Published in issue: #5(698)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aerodynamics and Heat Transfer Processes in Aircraft | |
Keywords: equations of state, thermophysical properties of ethylene, real gas, supercritical area |
The paper presents a technique for obtaining the dependencies of the thermophysical properties of ethylene on the pressure and temperature. The dependencies were obtained using Lee–Kesler, Lee–Erbar–Edmister, Redlich–Kwong equations of state and the virial equation for the real gas. The limits of applicability of the equations of state of the real gas for determining thermophysical properties of ethylene over a wide range of pressure and temperature values are shown. Graphs showing the dependences of the density and heat capacity on the temperature with a pressure change in the range from 0.1 to 20 MPa are presented. The total relative errors in the determination of the density and heat capacity of ethylene are calculated using the Lee–Kesler equation.
References
[1] Rid R., Prausnits Dzh., Shervud T. Svoistva gazov i zhidkostei [The properties of gases and liquids]. Leningrad, Khimiia publ., 1982. 592 p.
[2] Cocks P.A.T., Dawes W.N., Cant R.S. Simulations of the SCHOLAR Scramjet Experiments. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, 9–12 January 2012, TN, United States, 2012, 0944. 21 p.
[3] Surzhikov S.T. Modelirovanie radiatsionno-konvektivnogo nagreva model’nykh kamer PVRD na vodorodnom i uglevodorodnom toplive [Simulation of radiation-convective heating of model cameras of ramjets on hydrocarbon and hydrogen fuels]. Fiziko-khimicheskaia kinetika v gazovoi dinamike [Physical-Chemical Kinetics in Gas Dynamics]. 2014, vol. 15, is. 3. Available at: http://chemphys.edu.ru/issues/2014-15-3/articles/230/ (accessed 15 November 2017).
[4] Huber M.L. NIST standard reference database 4-NIST thermophysical properties of hydrocarbon mixtures. Version 3.1. National Inst. of Standards, Gaithersburg, MD, 2003.
[5] Brusilovskii A.I. Fazovye prevrashcheniia pri razrabotke mestorozhdenii nefti i gaza [Phase transformations in the development of oil and gas fields]. Moscow, Graal’ publ., 2002. 575 p.
[6] Grigor’ev B.A., Bogatov G.F., Gerasimov A.A. Teplofizicheskie svoistva nefti, nefteproduktov, gazovykh kondensatov i ikh fraktsii [Thermophysical properties of oil, oil products, gas condensates and their fractions]. Moscow, MEI publ., 1999. 372 p.
[7] Ueiles S. Fazovye ravnovesiia v khimicheskoi tekhnologii. Chast’ 1 [Phase equilibrium in chemical engineering. Part 1]. Moscow, Mir publ., 1989. 304 p.
[8] Ueiles S. Fazovye ravnovesiia v khimicheskoi tekhnologii. Chast’ 2 [Phase equilibrium in chemical engineering. Part 2]. Moscow, Mir publ., 1989. 360 p.
[9] Gerasimov A.A., Aleksandrov I.S., Grigor’ev B.A., Liugai D.V. Analiz tochnosti rascheta termodinamicheskikh svoistv prirodnykh uglevodorodov i soputstvuiushchikh gazov po obobshchennym kubicheskim uravneniiam sostoianiia [The analysis of accuracy of calculations related to thermodynamic properties of natural hydrocarbons and accompanying gases using the generalized cubic equations of state]. Vesti gazovoi nauki [Lead gas science]. 2015, no. 4(24), pp. 5–13.
[10] Abolpour B. Investigating effects of molecular structure on the behavior of saturated liquid hydrocarbons using a novel semi-empirical equation of state. Fluid phase equilibria, 2018, vol. 456, pp. 184–192.
[11] Estela-Uribe J.F. A three-parameter corresponding states model for non-polar fluids based on multiparameter reference equations of state. Fluid phase equilibria, 2011, vol. 304(1–2), pp. 86–104.
[12] Sun L., Ely J.F. A Corresponding states model for generalized engineering equations of state. International Journal of Thermophysics, 2005, vol. 26(3), pp. 705–727.
[13] Grigor’ev B.A., Gerasimov A.A., Aleksandrov I.S. Analiz i razrabotka metodov rascheta plotnosti nefti, gazovykh kondensatov i ikh fraktsii na osnove mnogokonstantnykh obobshchennykh fundamental’nykh uravnenii sostoianiia [Analysis and development of methods to calculate the density of oil, gas condensates and their fractions based on the multiparameter generalized fundamental equations of state]. Vesti gazovoi nauki [Lead gas science]. 2013, no. 1(12), pp. 4–12.
[14] GSSSD 47–83. Etilen zhidkii i gazoobraznyi. Plotnost’, ental’piia, entropiia i izobarnaia teploemkost’ pri temperaturakh 130–450 K i davleniia 0.1–100 MPa [SSSRD 47–83. Ethylene liquid and gas. Density, enthalpy, entropy and heat capacity at constant pressure at temperatures of 130–450 K and pressure 0.1–100 MPa]. Moscow, Gosstandart SSSR, Standartinform publ., 1983. 15 p.
[15] Sychev V.V., Vasserman A.A., Golovskii E.A., Kozlov A.D., Spiridonov G.A., Tsymarnyi V.A. Termodinamicheskie svoistva etilena [Thermodynamic properties of ethylene]. Moscow, Standartinform publ., 1981. 280 p.
[16] Poling B.E., Prausnitz J.M., O’Connell J.P. The properties of gases and liquids. New York, McGraw-Hill, 2001. 768 p.