Modeling and Calculating the Probability of Failure-Free Operation of a Liquid Low-Thrust Rocket Engine by Temperature Margin
Authors: Vorozheeva O.A., Yagodnikov D.A., Ageenko Y.I. | Published: 06.09.2018 |
Published in issue: #8(701)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aerodynamics and Heat Transfer Processes in Aircraft | |
Keywords: probability of failure-free operation, liquid rocket engine, low-thrust engine, nitrogen tetroxide, unsymmetrical dimethylhydrazine, pulse mode |
This article deals with the problems of modeling and calculating the probability of failure-free operation of a liquid low-thrust rocket engine using the one-dimensional load — strength reliability model. The design temperature of the combustion chamber hot wall and the maximum temperature permissible for the used structural material are selected as the parameters of the model. Using the results of modeling the thermal state of a chamber made of niobium alloy coated with MoSi2, the probability of failure-free operation of the liquid rocket with regard to the temperature margin is calculated. The results obtained show high reliability of the engine with a deflector centrifugal mixing scheme for tetroxide components and unsymmetrical dimethylhydrazine. The probability values of failure-free operation are determined, corresponding to the values of 0.99…0.999.
References
[1] Milekhin Yu.M., Berson A.Yu., Kavitskaya V.K., Erenburg E.I. Nadezhnost’ raketnyh dvigateley na tverdom toplive [Reliability of rocket engines on solid fuel]. Moscow, MGUP publ., 2005. 878 p.
[2] Kolomentsev A.I., Kraev M.V., Nazarov V.P., Chervakov V.V., Yatsunenko V.G. Ispytanie i obespechenie nadezhnosti raketnyh dvigateley [Testing and ensuring the reliability of rocket engines]. Krasnoyarsk, SibSAU publ., MAI publ., 2006. 336 p.
[3] Richard Strunz, Jeffrey W. Reliability as an Independent Variable Applied to Liquid Rocket Engine Test Plans. Journal of propulsion and power, 2011, vol. 27, no. 5, pp. 1032–1044.
[4] Huang Z., Fint J.A., Kuck F.M. Key Reliability Drivers of Liquid Propulsion Engines and a Reliability Model for Sensitivity Analysis. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ, United States, 10–13 July 2005, code 77077.
[5] Ageenko Yu.I. Issledovanie parametrov smeseobrazovaniya i metodicheskiy podhod k raschetam i proektirovaniyu ZHRDMT so struyno-tsentrobezhnoy skhemoy smesheniya komponentov AT i NDMG na stenke kamery sgoraniya [Mixing parameters investigations and methods of approach to calculations and development of the thrusters with a spray centrifugal scheme of NT and NDMH mixing on the confusion chamber wall in consi¬dered]. Vestnik SGAU [Vestnik of Samara University. Aerospace and Mechanical Engineering]. 2009, special is. no. 3–2(19), pp. 171–177.
[6] Ageenko Yu.I., Minashin A.G., Piunov V.Yu., Seleznev E.P., Lebedev F.M., Petrikevich B.B. Zhidkostnyy raketnyy dvigatel’ maloy tyagi dlya sistemy prichalivaniya i orientatsii pilotiruemogo kosmicheskogo korablya «SOYUZ» [Liquid-propellant Microthrusters for System of Docking Approach and Orientation of Soyuz Manned Spacecraft]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2006, no. 3, pp. 73–79.
[7] Ageenko Yu.I., Panin I.G., Pegin I.V., Smirnov I.A. Osnovnye dostizheniya v raketnyh dvigatelyah maloy tyagi razrabotki konstruktorskogo byuro himicheskogo mashinostroeniya im. A.M. Isaeva [The main achievements in low-thrust rocket engines developed by the design agency of chemical engineering named after A.M. Isayev]. Dvigatel’ [Engine]. 2014, no. 2(92), pp. 24–27.
[8] Ageenko YU.I., Pegin I.V. Podtverzhdenie povysheniya energeticheskoy effektivnosti ZHRDMT s deflektorno-tsentrobezhnoy skhemoy smeseobrazovaniya [Verification of energy efficiency of a low-thrust liquid-propellant engine with the deflector-centrifugal injecting pattern]. Vestnik SGAU [Vestnik of Samara University. Aerospace and Mechanical Engineering]. 2014, special is. no. 5–3(47), pp. 46–54.
[9] Ageenko Yu.I., Pegin I.V., Chesnokov D.V. Dvigatel’ korrektsii tyagoy 50 N dlya posadochnogo apparata «LUNA-RESURS» [50 N thrust correction engine for the «Luna-Resurs» lunar module descent engine]. Vestnik SGAU [Vestnik of Samara University. Aerospace and Mechanical Engineering]. 2014, special is. no. 5–1(47), pp. 112–117.
[10] Vorozheeva O.A. Modelirovanie i issledovanie teplovogo sostoyaniya rabotayushchego v impul’snom rezhime zhidkostnogo raketnogo dvigatelya maloy tyagi. Diss. kand. tekh. nauk [Simulation and study of the thermal state of a pulsed low-thrust liquid-propellant rocket engine. Cand. tech. sci. diss.]. Moscow, 2017. 146 p.
[11] Vorozheeva O.A., Yagodnikov D.A. Chislennoe issledovanie vliyaniya rezhimnyh parametrov na teplovoe sostoyanie konstruktsii raketnogo dvi-gatelya maloy tyagi na toplive kislorod — metan pri rabote v impul’snom rezhime [Numerical study of the operating condition effect on the thermal state of the structure of low thruster on oxygen-methane propellant operating in pulsed mode]. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2017, is. 1. Available at: http://engjournal.ru/articles/1570/1570.pdf (accessed 11 March 2018).
[12] Yagodnikov D.A., Vorozheeva O.A. Raschetnoe issledovanie teplovogo sostoyaniya raketnogo dvigatelya maloy tyagi na gazoobraznyh komponentah topliva kislorod-metan, rabotayushchego v impul’snom rezhime [The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation]. Nauka i obrazovanie. Nauchnoe izdanie [Science and Education. Scientific Publication]. 2014, no. 11, pp. 330–344. Available at: http://technomagelpub.elpub.ru/jour/article/view/740 (accessed 11 March 2018).
[13] Kozlov A.A., Bogacheva D.Yu., Borovik I.N. Issledovanie teplovoy effektivnosti zavesnogo ohlazhdeniya kamery sgoraniya RDMT [Investigation of thermal efficiency of curtain cooling of the combustion-chamber wall of a low-thrust engine]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2014, no. 1, pp. 80–92.
[14] De Luca L.T., Shimada T., Sinditskii V.P., Calabro M. Chemical Rocket Propulsion. London, Springer, 2017. 1084 p.
[15] Burkal’tsev V.A., Lapitskiy V.I., Novikov A.V., Yagodnikov D.A. Matematicheskaya model’ i raschet harakteristik rabochego protsessa v kamere sgoraniya ZHRD maloy tyagi na komponentah topliva metan — kislorod [Mathematical model and calculation of the characteristics of the working process in the combustion chamber of low-thrust rocket engine on fuel components methane-oxygen]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2004, spec. is., pp. 8–17.