Bypass Turbojet Engines
Authors: Pismennyi V.L. | Published: 18.06.2019 |
Published in issue: #6(711)/2019 | |
Category: Aviation, Rocket and Technology | Chapter: Aerodynamics and Heat Transfer Processes in Aircraft | |
Keywords: bypass turbojet engine, heat exchanger, specific fuel consumption, heat engine, internal thermodynamic cycle, Pismennyi cycle |
Subsonic bypass turbojet engines of the fifth generation have reached technical maturity, with overall efficiency of 35–38%. Without changing the thermodynamic cycle of the engine, any further work in this direction is futile. The researcher proposes a method of increasing the thermodynamic effectiveness of heat engines based on the so called internal thermodynamic cycles (Pismennyi cycles). The internal cycles possess remarkable characteristics: they increase the effective work output and the heat engine efficiency (thermal and effective); furthermore, they remove temperature restrictions. A gas dynamic design of a bypass turbojet engine is developed based on the internal thermodynamic cycle. Two heat exchangers (circulating and regenerating) are installed in the bypass duct, the first of which can increase the gas temperature before the fan to 2300 K and higher, while the second one can cool the exhaust temperature down to the level comparable to the air temperature behind the fan. Depending on the thrust, general efficiency of the engine in cruise mode (H = 11 km, M = 0.8) can reach 45–55 %. Compared to bypass turbojet engines of the fifth generation (Trent 1000, GP7270, PW4460, etc.), fuel savings with the new design are estimated to be more than 20 %. With the adoption of the proposed jet engine design the total economic impact for airlines can exceed $10 billion annually.
References
[1] Lyul’ka A.M. Dvukhkonturnyy turboreaktivnyy dvigatel’ [Turbojet engine]. Avt. svidetel’stvo SSSR no. 117179, 1958.
[2] Bakulev V.I., Golubev V.A., Krylov B.A., Marchukov E.YU., Nechaev YU.N., Onishchik I.I., Sosunov V.A., Chepkin V.M. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i ehnergeticheskikh ustanovok [Theory, calculation and design of aircraft engines and power plants]. Moscow, MAI publ., 2003. 688 p.
[3] Raboty vedushchikh aviadvigatelestroitel’nykh kompaniy v obespechenie sozdaniya perspektivnykh aviatsionnykh dvigateley (analiticheskiy obzor) [The work of the leading aircraft engine companies in ensuring the creation of promising aircraft engines (analytical review)]. Ed. Skibin V.A. Moscow, TSIAM publ., 2010. 673 p.
[4] Pis’mennyy V.L. Internal thermodynamic cycles. Konversiya v mashinostroenii, 2006, no. 3, pp. 5–10 (in Russ.).
[5] Pis’mennyy V.L. Teplovaya mashina [Heat engine]. Patent RF no. 2269668, 2006. 9 p.
[6] Pis’mennyy V.L. Parogazoturbinnaya ustanovka [Steam gas turbine unit]. Patent RF no. 2272916, 2006. 8 p.
[7] Pis’mennyy V.L. Sposob forsirovaniya gazoturbinnykh ustanovok [The method of forcing gas turbines]. Patent RF no. 2284418, 2006. 6 p.
[8] Pis’mennyy V.L. Parogazovaya ustanovka [Steam and gas installation]. Patent RF no. 2520762, 2014. 12 p.
[9] Pis’mennyy V.L. Parogazoturbinnaya ustanovka [Steam gas turbine unit]. Patent RF no. 2523087, 2014. 8 p.
[10] Pis’mennyy V.L. Stekhiometricheskaya parogazovaya ustanovka [Stoichiometric steam and gas installation]. Patent RF no. 2666701, 2018. 9 p.
[11] Pis’mennyy V.L. Stekhiometricheskaya parogazoturbinnaya ustanovka [Stoichiometric steam and gas turbine plant]. Patent RF no. 2671264, 2018. 8 p.
[12] Pis’mennyy V.L. Ehnergoustanovka [Power plant]. Patent RF no. 2673948, 2018. 10 p.
[13] Pis’mennyy V.L. Sposob forsirovaniya gazoturbinnoy ustanovki [Method of forcing a gas turbine installation]. Patent RF no. 2674089, 2018. 7 p.
[14] Pis’mennyy V.L. Gazoturbinnaya ustanovka [Gas turbine plant]. Patent RF no. 2675167, 2018. 7 p.
[15] Pis’mennyy V.L. Paroturbinnyy dvigatel’ [Steam turbine engine]. Patent RF no. 2285131, 2006. 7 p.
[16] Pis’mennyy V.L. Sposob forsirovaniya turboreaktivnogo dvigatelya [Method of boosting a turbojet engine]. Patent RF no. 2616137, 2017. 10 p.
[17] Pis’mennyy V.L. Turboehzhektornyy dvigatel’ i sposob ego regulirovaniya [Turbo-ejector engine and method of its regulation]. Patent RF no. 2645373, 2018. 16 p.
[18] Pis’mennyy V.L. Pryamotochnyy vozdushno-reaktivnyy dvigatel’ [Ramjet engine]. Patent RF no. 2647919, 2018. 6 p.
[19] Pis’mennyy V.L. Dvukhkonturnyy turboreaktivnyy dvigatel’ [Turbojet engine]. Patent RF no. 2661427, 2018. 8 p.
[20] Pis’mennyy V.L. Dvukhkonturnyy turboreaktivnyy dvigatel’ [Turbojet engine]. Patent RF no. 2669420, 2018. 5 p.
[21] Pis’mennyy V.L. Teploobmennik [Heat exchanger]. Patent RF no. 2607916, 2017. 8 p.
[22] Pis’mennyy V.L. Sposob okhlazhdeniya dvukhkonturnogo turboreaktivnogo dvigatelya [Cooling method of a double-circuit turbojet engine]. Patent RF no. 2617026, 2017. 8 p.