Analyzing thermal state of the Buran orbital space vehicle structure in the areas of possible damages to its thermal protection elements
Authors: Timoshenko V.P., Prosuntsov P.V., Reznik S.V. | Published: 10.06.2024 |
Published in issue: #6(771)/2024 | |
Category: Aviation, Rocket and Technology | Chapter: Aerodynamics and Heat Transfer Processes in Aircraft | |
Keywords: thermal protection, fibrous ceramics, felt substrate, thermal conductivity coefficient, thermal destruction, metal skin melting |
The paper considers main types of the thermal protection structures and their installation zones on the Buran orbital vehicle outer surfaces. Tiled thermal protection based on the lightweight fibrous quartz ceramics covers most of the space vehicle surface and provides unique thermal conductivity and low weight characteristics. Therefore, it will remain in future the basis in thermal protection systems for the aerospace vehicles developed in the USA, China, India and other countries. Possible overheating or melting of the protected structures due to damage or loss of the separate heat-protective tiles is a serious problem. Certain types of damage are considered, including partial tile chipping, its complete tearing off together with the felt substrate and the tile tearing off with maintaining the damping felt substrate made of the organic material on the vehicle body. To assess the thermal protection properties of a damaged felt substrate exposed to air plasma, experimental studies were conducted of its heating in the high-frequency induction plasmatron jet. The data obtained confirmed the substrate structural integrity after high-temperature heating and made it possible to calculate its effective thermal conductivity for subsequent use in the thermal calculations. Calculation of the Buran orbital vehicle structure heating in several zones with partial damage or complete separation of the separate thermal protection tiles made it possible to assess the permissible levels of damage to the tile thermal protection not leading to the metal hull skin melting.
EDN: ZTAESH, https://elibrary/ztaesh
References
[1] Klimenko N.N., Katkalov V.B., Morozova M.L. The perspectives of reusable space transport systems. Part I. Vozdushno-kosmicheskaya sfera [Aerospace Sphere Journal], 2021, no. 4, pp. 88–99. (In Russ.).
[2] Aleksandrov V., Romanov R. Views of the US military and political leadership on the military use of space. Zarubezhnoe voennoe obozrenie, 2021, no. 12, pp. 51–57. (In Russ.).
[3] Le V.T., Ha N.S., Goo N.S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: a review. Compos. B. Eng., 2021, vol. 226, art. 109301, doi: https://doi.org/10.1016/j.compositesb.2021.109301
[4] Huang A. Thermal protection materials branch. nasa.gov: website. URL: https://www.nasa.gov/general/thermal-protection-materials-branch-reusable-materials/ (accessed: 15.01.2024). (In Russ.).
[5] Rosenthal J. Spaceplane thermal protection system (TPS) fitting and bonding control. dewesoft.com: website. URL: https://dewesoft.com/blog/space-thermal-protection-system-fitting-control (accessed: 15.01.2024).
[6] Semenov Yu.P., Lozino-Lozinskiy G.E., Lapygin V.L. et al. Mnogorazovyy orbitalnyy korabl «Buran» [Reusable orbital ship "Buran"]. Moscow, Mashinostroenie Publ., 1995. 446 p. (In Russ.).
[7] Gribkov V.N., Mizyurina G.T., Shchetanov B.V. et al. [Possibilities of fibre thermal protection]. Chelovek-Zemlya-Kosmos. Tr. 1-y mezhd. aviakosmich. konf. T. 5 [Man-Earth-Space. Proc. 1st Int. Aerospace Conf. Vol. 5.]. Moscow, Voennaya akad. im. F.E. Dzerzhinskogo Publ., 1995, pp. 223–231. (In Russ.).
[8] Gofin M.Ya. Zharostoykie i teplozashchitnye konstruktsii mnogorazovykh aerokosmicheskikh apparatov [Heat-resistant and heat-protective constructions of reusable aerospace vehicles]. Moscow, ZAO TF Mir Publ., 2003, 672 p. (In Russ.).
[9] Williams S.D., Curry D.M. Thermal protection materials. Thermophysical property data. NASA, 1992. 236 p.
[10] Reznik S.V., Prosuntsov P.V. Opredelenie kharakteristik teploperenosa materialov teplovoy zashchity mnogorazovykh kosmicheskikh apparatov po rezultatam teplovykh ispytaniy [Assessment of heat transfer characteristics of thermal protection materials for reusable spacecraft based on the results of thermal tests]. Moscow, Bauman MSTU Publ., 2015. 90 p. (In Russ.).
[11] Daryabeigi K. Thermal analysis and design of multi-layer insulation for re-entry aerodynamic heating. AIAA Paper, 2001, no. 2834, doi: https://doi.org/10.2514/6.2001-2834
[12] Prosuntsov P.V., Reznik S.V. [Use of data on heat transfer coefficient of translucent diffusing materials in thermal calculations]. Gagarinskie nauchnye chteniya po kosmonavtike i aviatsii [Gagarin Scientific Readings on Cosmonautics and Aviation]. Moscow, Nauka Publ., 1990, pp. 56–60. (In Russ.).
[13] Buran: website. URL: http://www.buran.ru (accessed: 15.01.2024). (In Russ.).
[14] Lee S.C., Cunnington G.R. Heat transfer in fibrous insulations: comparison of theory and experiment. J. Thermophys. Heat Trans., 1998, vol. 12, no. 3, pp. 297–303, doi: https://doi.org/10.2514/2.6356
[15] Daryabeigi K., Cunnington G., Miller S. et al Combined heat transfer in high-porosity high-temperature fibrous insulations: theory and experimental validation. AIAA Paper, 2010, no. 4660, doi: https://doi.org/10.2514/6.2010-4660
[16] Timoshenko V.P. Proektirovanie i eksperimentalnaya otrabotka teplozashchity Burana [Design and experimental testing of Buran heat protection]. V: Aviatsionno-kosmicheskie sistemy [In: Aerospace systems]. Moscow, Izd-vo MAI Publ., 1997, pp. 123–135. (In Russ.).
[17] Brodzik Ł. Analysis of damaged alumina enhanced thermal barrier. J. Phys.: Conf. Ser., 2021, vol. 2116, art. 012063, doi: https://doi.org/10.1088/1742-6596/2116/1/012063
[18] Gordeev A.N., Kolesnikov A.F., Yakushin M.I. Bezelektrodnyy plazmatron dlya modelirovaniya neravnovesnogo teploobmena [Electrodeless plasmatron for modelling non-equilibrium heat exchange]. Moscow, IPM Publ., 1983. 34 p. (In Russ.).
[19] Baronets P.N., Gordeev A.N., Kolesnikov A.F. et al. [Development of heat protective materials of the buran orbiter on induction plasmatrons]. Gagarinskie nauchnye chteniya po kosmonavtike i aviatsii [Gagarin Scientific Readings on Cosmonautics and Aviation]. Moscow, Nauka Publ., 1991, pp. 41–52. (In Russ.).
[20] Yakushin M.I., Timoshenko V.P., Patrichnaya M.P. Thermovision control of thermal modes during tests of structural elements and thermal protection of the orbiter "Buran" on induction high-frequency plasmatron VGU-2-200. Tekhnika vozdushnogo flota, 1993, no. 4–6, pp. 72–74. (In Russ.).
[21] Luns D., Giangaspero V., Viladegut A. et al. Effect of electron number densities on the radio signal propagation in an inductively coupled plasma facility. Acta Astronaut., 2023, no. 212, pp. 408–423, doi: https://doi.org/10.1016/j.actaastro.2023.07.028
[22] Zheng P., Wu J., Zhang Y. et al. An atmosphere-breathing propulsion system using inductively coupled plasma source. Chinese J. Aeronaut., 2023, vol. 36, no. 5, pp. 223–238, doi: https://doi.org/10.1016/j.cja.2023.03.003
[23] Brociek R., Hetmaniok E., Napoli C. et al. Identification of aerothermal heating for thermal protection systems taking into account the thermal resistance between layers. Int. J. Heat Mass Transf., 2024, vol. 218, art. 124772, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2023.124772
[24] Brociek R., Hetmaniok E., Słota D. Reconstruction of aerothermal heating for the thermal protection system of a reusable launch vehicle. Appl. Therm. Eng., 2023, vol. 219-A, art. 119405, doi: https://doi.org/10.1016/j.applthermaleng.2022.119405
[25] Timoshenko V.P. [Computational and experimental methods of modelling heat transfer processes in heat protection and aerospace aircraft structure]. Chelovek-Zemlya-Kosmos. Tr. 1-y mezhd. aviakosmich. konf. T. 2 [Man-Earth-Space. Proc. 1st Int. Aerospace Conf. Vol. 2.]. Moscow, 1995, pp. 230–245. (In Russ.).
[26] Reznik S.V., Kalinin D.Yu., Mikhalev A.M., et al. [Staging and results of complex studies of heat transfer in porous materials of reusable transport space systems]. Tr. 2-oy mezhd. nauch. konf. Raketno-kosmicheskaya tekhnika: fundamentalnye i prikladnye problemy. T. 2 [Proc. 2nd Int. Conf. Rocket and Space Engineering: Fundamental and Applied Problems. Vol. 2]. Moscow, Bauman MSTU Publ., 2005, pp. 83–102. (In Russ.).
[27] Han G., Yang Q., Yang F. et al. Design and efficiency assessment of hybrid thermal protection structures for return capsule reentry. Case Stud. Therm. Eng., 2023, vol. 41, art. 102656, doi: https://doi.org/10.1016/j.csite.2022.102656
[28] Zhang Z., Sun Y., Zhou D. et al. Nonlinear transient heat transfer analysis of multilayered thermal protection systems by incremental differential quadrature element method. Case Stud. Therm. Eng., 2023, vol. 52, art. 103730, doi: https://doi.org/10.1016/j.csite.2023.103730