The Methods of Designing a Polymer Composite Wing Using Parametrical Modeling. Part III. Selection and Justification of Optimal Schemes for Reinforcing Load Bearing Elements
Authors: Mikhailovskiy K.V., Baranovski S.V. | Published: 31.05.2018 |
Published in issue: #5(698)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: airliner, wing, structural arrangement, carbon fibre, reinforcement pattern |
In modern airliners, to ensure perfect operation of both lightly loaded elements as well as crucial assemblies such as wings, polymer composite materials are used. These provide characteristics that would be impossible if conventional metal alloys were used. Due to the specifics of geometry, creating a polymer composite wing is a complex engineering task, where a key element is the selection and justification of reinforcing schemes with regard to anisotropy of the material and adaptation of the material characteristics to the acting forces. In this work, a challenging problem of determining and optimizing structural parameters of the main load bearing elements of a carbon fibre wing using rational reinforcing schemes is considered. Wall thickness values, layup patterns of unidirectional layers and safety margins of the elements of the wing structural arrangement are determined with regard to acting operational loads for several angle of attack corresponding to different flight modes. The study results complement the proposed method of designing a polymer composite wing based on parametrical modelling.
References
[1] Zichenkov M.Ch., Kondakov I.I., Shanygin A.N. Novyi podkhod k sozdaniiu legkikh i nadezhnykh silovykh kompozitnykh aviakonstruktsii [Novel approach to design of lightweight and reliable composite primary aircraft structures]. Nauchnyi Vestnik MGTU GA [Civil Aviation High Technologies]. 2016, vol. 19, no. 06, pp. 127–136.
[2] Liu Q., Jrad M., Mulani S.B., Kapania R.K. Integrated Global Wing and Local Panel Optimization of Aircraft Wing. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, 2015, AIAA Paper no. 2015–0137, pp. 1–19.
[3] Qun Z., Yunliang D., Haibo J. A Layout Optimization Method of Composite Wing Structures Based on Carrying Efficiency Criterion. Chinese Journal of Aeronautics, 2011, vol. 24, no. 4, pp. 425–433.
[4] Kaplan E.M., Yesilkaya K.K., Yaman K. Stiffness Equivalent Finite Element Modelling of a Physical Assembly by Structural Optimization Method. 7th International Conference on Mechatronics and Manufacturing, Singapore 2016, vol. 45, pp. 1–5.
[5] Bach T., Dähne S., Heinrich L., Hühne C. Structural Optimization of Composite Wings in an Automated Multi-Disciplinary Environment. 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, 2014, AIAA Paper no. 2014-2295, pp. 1–13.
[6] Li D., Xiang J. Optimization of Composite Wing Structure for a Flying Wing Aircraft Subject to Multi Constraints. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, 2013, AIAA Paper no. 2013-1934, pp. 1–11.
[7] Dillinger J.K.S., Abdalla M.M., Klimmek T. Stiffness Optimization of Composite Wings with Aeroelastic Constraints. 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSM, Indianapolis, 2012, AIAA Paper no. 2012–5401, pp. 1–15.
[8] Shingel’ L.P. O proektirovanii kryla iz kompozitsionnogo materiala samoleta vertikal’nogo vzleta i posadki [About wing projection from composite material for the airplane of vertical take-off and landing]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Izvestia of Samara Scientific Center of the Russian Academy of Sciences]. 2012, vol. 14, no. 1(2), pp. 514–516.
[9] Kasumov E.V. Metodika poiska ratsional’nykh konstruktivnykh parametrov s primeneniem metoda konechnykh elementov [The method for search the optimal design parameters using the method of finite elements]. Uchenye zapiski TsAGI [Uchenye Zapiski TSAGI]. 2015, vol. 46, no. 2, pp. 63–79.
[10] Soloshenko V.N., Popov Iu.I. Kontseptual’noe proektirovanie konstruktsii kessona kryla iz kompozitsionnykh materialov srednemagistral’nogo samoleta [Conceptual design of the wing caisson structure made of composite materials of medium-haul aircraft]. Vestnik Moskovskogo aviatsionnogo instituta [Bulletin of the Moscow Aviation Institute]. 2013, vol. 20, no. 1, pp. 16–30.
[11] Mitrofanov O.V. K voprosu ob optimal’nom armirovanii podkreplennykh panelei tonkostennykh konstruktsii iz kompozitnykh materialov [On the question of optimal reinforcement of reinforced panels of thin-walled structures made of composite materials]. Aktual’nye problemy sovremennoi nauki [Actual problems of modern science]. 2017, no. 5(96), pp. 49–53.
[12] Peeters D., Abdallay M. Design guide lines in non-conventional composite laminate optimization. Journal of Aircraft, 2017, vol. 54, no. 4, pp. 1454–1464.
[13] Sapkal K.S., Attar P.J. Experimental and Computational Aeroelastic Analysis of a Composite Material Delta Wing in Low Subsonic Flow. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences, Denver, 2011, AIAA Paper no. 2011–1743, pp. 1–37.
[14] Reznik S.V., Prosuntsov P.V., Ageeva T.G. Optimal’noe proektirovanie kryla suborbital’nogo mnogorazovogo kosmicheskogo apparata iz gibridnogo polimernogo kompozitsionnogo materiala [Optimal design of the suborbital reusable spacecraft wing made of polymer composite]. Vestnik NPO im. S.A. Lavochkina [Bulletin NPO named after S.A. Lavochkin]. 2013, no. 1(17), pp. 38–43.
[15] Mikhailovskii K.V., Baranovski S.V. Metodika proektirovaniia kryla iz polimernykh kompozitsionnykh materialov na osnove parametricheskogo modelirovaniia. Chast’ 2. Proektirovanie silovoi konstruktsii [The Methods of Designing a Polymer Composite Wing Using Parametrical Modeling. Part II. Design of the Load Bearing Structure]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2016, no. 12(681), pp. 106–116.