A Comparison of Characteristics of a Model of the Anode Layer Thruster Operating on Xenon, Argon and Nitrogen
Authors: Dukhopelnikov D.V., Ryаzanov V.A., Shilov S.O. | Published: 26.07.2018 |
Published in issue: #7(700)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: electric rocket propulsion unit, anode layer thruster, reactive gas, ambient air, ion current, power thrust ratio |
Characteristics of the thruster with anode layer depends on the propellant. In the transition from traditionally used and well-studied xenon to other propellants, it is important to know how the main parameters of the thruster are changing. The article presents the results of research into the operation of a laboratory model of the anode layer thruster in the low voltage mode on xenon, argon and nitrogen. Current-voltage characteristics and dependences of the ion current on the discharge voltage of model devices for each propellant are obtained. The energy and mass efficiency factors are compared. The evaluation of the power-thrust ratio when the anode layer thruster operates on nitrogen and inert gases is performed.
References
[1] Marakhtanov M.K., Pil’nikov A.V. O vozmozhnosti primeneniia solnechnoi elektroreaktivnoi dvigatel’noi ustanovki na nizkoorbital’nykh malykh kosmicheskikh apparatakh [On solar electric propulsion system application possibility for low-orbit small spacecraft]. Vestnik MAI [Vestnik MAI]. 2017, vol. 24, no. 4, pp. 26–39.
[2] Schonherr T., Komurasaki K., Herdrich G. Analysis of Atmosphere-Breathing Electric Propulsion. IEEE Transactions on Plasma Science, 2015, vol. 43(1) pp. 287–294.
[3] GOST 4401–81. Atmosfera standartnaia. Parametry [State Standard 4401–81. Standart atmosphere. Parameters]. Moscow, Standartinform publ., 1982. 181 p.
[4] Pekker L., Keidar M. Analysis of Air breathing Hall-Effect Thrusters. Journal of propulsion and power, 2012, vol. 28, no. 6, pp. 1399–1405, doi: 10.2514/1.B34441.
[5] Barral S., Cifali G., Albertoni R., Andrenucci M. Conceptual Design of an Air-Breathing Electric Propulsion System. 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, July 4–10, 2015, IEPC-2015-271/ISTS-2015-b-271.
[6] Dukhopel’nikov D.V., Ivakhnenko S.G., Kurilovich D.A. Khollovskie dvigateli na zabortnom vozdukhe dlia kosmicheskikh apparatov na nizkoi opornoi orbite [Air breathing hall effect thrusters for low earth orbit spacecraft]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2013, no. 12. Available at: http://www.technomag.bmstu.ru/doc/660910.html (accessed 02 October 2017).
[7] Dukhopel’nikov D.V., Ivakhnenko S.G., Riazanov V.A., Shilov S.O. O vozmozhnosti ispol’zovaniia khollovskogo dvigatelia na zabortnom vozdukhe dlia uderzhaniia kosmicheskogo apparata na nizkoi okolozemnoi orbite [On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2016, no. 12. Available at: http://old.technomag.edu.ru/doc/852758.html (accessed 02 October 2017).
[8] Erofeev A.I., Nikiforov A.P., Popov G.A., Suvorov M.O., Syrin S.A., Khartov S.A. Razrabotka vozdushnogo priamotochnogo elektroreaktivnogo dvigatelia dlia kompensatsii aerodinamicheskogo tormozheniia nizkoorbital’nykh kosmicheskikh apparatov [Development of Air-Electrorocket Ramjet for Compensating of Low-Orbit Spacecrafts Aerodynamic Drag]. Vestnik NPO im. S.A. Lavochkina [Vestnik NPO im. S.A. Lavochkina]. 2016, no. 3, pp. 104–110.
[9] Andreussi T., Cifali G., Giannetti V., Piragino A., Ferrato E., Rossodivita A., Andrenucci M. Development and Experimental Validation of a Hall Effect Thruster RAM-EP Concept. 35th International Electric Propulsion Conference, 8–12 October 2017, IEPC-2017-377.
[10] Cifali G., Dignani D., Misuri T., Rossetti P., Andrenucci M., Valentian D., Marchandise F., Feili D., Lotz B. Experimental characterization of HET and RIT with atmospheric propellants. 32nd International Electric Propulsion Conference, 11–15 September, 2011, Wiesbaden, Germany, IEPC-2011-224.
[11] Dukhopel’nikov D.V., Iurchenko A.A. Eksperimental’noe issledovanie tekhnologicheskogo uskoritelia s anodnym sloem «Radikal» bez katoda kompensatora [Experimental Study of «Radikal» Technological Accelerator with Anode Layer without Cathode Compensator]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2004, no. 3, pp 74–83.
[12] Grishin S.D., Leskov L.V., Kozlov N.P. Elektricheskie raketnye dvigateli kosmicheskikh apparatov [Electrical rocket engines of space vehicles]. Moscow, Mashinostroenie publ., 1989. 276 p.