Experimental and Theoretical Research of Adaptive Inertia-Capillary Device for Liquid Intake
Authors: Ivanov M.Y., Kuranov E.G., Novikov A.E., Resh G.F. | Published: 25.10.2018 |
Published in issue: #10(703)/2018 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: lyophilic homogeneous liquid, liquid intake method, capillary phase separator (CPS), comprehensive compression, Galileo-Torricelli principle, natural and artificial gravity |
This paper deals with the dynamic process of interaction of a thin-walled compliant (adaptive) spatial structure made of a permeable microporous capillary phase separator with a lyophilic homogeneous liquid mixture flowing through. It is shown that a comprehensive compression force occurs during an intake of a liquid medium from a vessel with a spatial structure placed in it. The force is applied to the portion of the phase separator that is located in the gas phase region above the moving gas-liquid interface. The existence of the comprehensive force impact is determined by a complex of phenomena of various physical nature: Galileo-Torricelli principle, surface interactions, natural and/or artificial gravity. The detected effect can be used to maintain the current characteristic linear dimension of the spatial structure below a certain limiting value determined by a known formula of the theory of rigid capillary liquid intake devices used by F.T. Dodge, V.M. Polyaev and other researchers when studying operating conditions of such units. This allows increasing the time of liquid production and reducing its residues in the vessel, while maintaining the specified capillary retention capacity of the phase separator. It also allows expanding the field of practical application of capillary phase separators, for example, to fuel systems of atmospheric highly maneuverable aircraft.
References
[1] Dergachev A.A., Ivanov M.Yu., Kabanov V.A., Kuranov E.G., Novikov A.E., Resh G.F., Bol’shakov V.A., Novikov Yu.M. Sposob vyrabotki topliva iz baka letatel’nogo apparata [Method of fuel production from the tank of the aircraft]. Patent RF no. 2617903, 2017, 12 p.
[2] Resh G.F., Ivanov M.Yu., Novikov A.E., Kuranov E.G. Sposob otbora zhidkosti iz emkosti s ispol’zovaniem adaptivnyh inertsionno-kapillyarnyh ustroystv [Method of fluid extraction from the reservoir using adaptive inertia-capillary devices]. Aktual’nye problemy kosmonavtiki. Tr. 42 akademicheskih chteniy po kosmonavtike, posvyashchennyh pamyati akademika S.P. Koroleva i drugih vydayushchihsya otechestvennyh uchenyh-pionerov osvoeniya kosmicheskogo prostranstva [Actual problems of cosmonautics. Proceedings of the 42 academic readings on cosmonautics, dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists-pioneers of space exploration]. Moscow, 23–26 January 2018, Moscow, Bauman Press, 2018, pp. 421–422.
[3] TU 14-4-507–99. Setka tkanaya s kvadratnymi yacheykami mikronnyh razmerov [TU 14-4-507–99. Grid woven with square cells of micron size]. 3 p.
[4] Bagrov V.V., Kurpatenkov A.V., Polyaev V.M., Sintsov A.L., Suhostavets V.F. Kapillyarnye sistemy otbora zhidkosti iz bakov kosmicheskih letatel’nyh apparatov [Capillary system of selection of the liquid from the tank to the spacecraft]. Moscow, Energomash publ., 1997. 328 p.
[5] Kozlov A.A., Novikov V.N., Solov’ev E.V. Sistemy pitaniya i upravleniya zhidkostnyh raketnyh dvigatel’nyh ustanovok [Power and control systems for liquid rocket propulsion systems]. Moscow, Mashinostroenie publ., 1988. 352 p.
[6] Chelomey V.N., Poluhin D.A., Mirkin N.N., Oreshchenko V.M., Usov G.L. Pnevmogidravlicheskie sistemy dvigatel’nyh ustanovok s zhidkostnymi raketnymi dvigatelyami [Pneumatic-hydraulic system propulsion systems, liquid rocket engines]. Moscow, Mashinostroenie publ., 1978. 240 p.
[7] Nikitin V.I., Kuranov E.G., Resh G.F. Toplivnyy bak letatel’nogo apparata [The fuel tank of the aircraft]. Patent RF no. 2497724, 2013, 8 p.
[8] Novikov A.E., Resh G.F., Ivanov M.Yu. Metodika modelirovaniya vyrabotki topliva iz bakov letatel’nyh apparatov v usloviyah vozdeystviya znakoperemennyh peregruzok [Simulation technique of fuel consumption from aircraft fuel tanks in the presence of alternating g-loads]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2013, no. 2, pp. 99–110. Available at: http://technomag.bmstu.ru/doc/533503.html (accessed 15 April 2018).
[9] Arzumanov Yu.L., Halatov E.M., Chekmazov V.I. Osnovy proektirovaniya sistem pnevmo- i gidroavtomatiki [Basics of designing systems of pneumatic and hydraulic automation]. Moscow, Spektr publ., 2017. 459 p.
[10] Arzumanov Yu.L., Halatov E.M., Chekmazov V.I., Chukanov K.P. Matematicheskie modeli sistem pnevmoavtomatiki [Mathematical models of pneumatic systems]. Moscow, Bauman Press, 2009. 296 p.
[11] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 t. T. 3: Osnovy mekhaniki zhidkosti i gaza [Continuum mechanics. In 4 vol. Vol. 3: Fundamentals of fluid and gas mechanics]. Moscow, Bauman Press, 2011. 463 p.
[12] Park J.-W., Ruch D., Wirtz R.A. Thermal/Fluid Characteristics of Isotropic Plain-Weave Screen Laminates as Heat Exchange Surfaces. 40th AIAA Aerospace Sciences, 2002, AIAA Paper 2002–0208, pp. 1–9.
[13] Bommisetty R.V.N., Joshi D.S., Kollati V.R. Flow Loss in Screens: A Fresh Look at Old Correlation. Journal of Mechanics Engineering and Automation, 2013, vol. 3, pp. 29–34.
[14] Tian J., Kim T., Lu T.J., Hodson H.P., Queheillalt D.T., Sypeck D.J., Wadley H.N.G. The Effects of Topology upon Fluid-Flow and Heat-Transfer within Cellular Copper Structures. International Journal of Heat and Mass transfer, 2004, vol. 47, pp. 3171–3186, doi: 10.1016/j.ijheatmasstransfer.2004.02.010.
[15] Fischer A., Gerstmann J. Flow Resistance of Metallic Screens in Liquid, Gaseous and Cryogenic Flow. 5th European Conference for Aeronautics and Space Sciences (EUCASS), München, 1–5 July 2013, pp. 1–12.
[16] Middelstädt F., Gerstmann J. Numerical Investigations on Fluid Flow through Metal Screens. 5th European Conference for Aeronautics and Space Sciences (EUCASS), München, 1–5 July 2013, pp. 1–15.
[17] Davydova A.V. Gidravlicheskoe soprotivlenie setchatyh razdeliteley faz v nestatsionarnom potoke zhidkosti [The hydraulic resistance of mesh dividers of phases in the non-stationary liquid stream]. Vostochno-Evropeyskiy zhurnal peredovyh tekhnologiy [Eastern-European Journal of Enterprise Technologies]. 2014, vol. 4, no. 7(70), pp. 25–29.
[18] Tsuchiya T., Koishi Y., Iwamoto M., Yamada H. Possibility of a Straightening Flow-Meter by Using Woven Screen. Open Journal of Fluid Dynamics, 2015, vol. 5, pp. 34–38, doi: 10.4236/ojfd.2015.51005.
[19] Kostyukov A.V., Makarov A.R., Merzlikin V.G. Issledovanie teplogidravlicheskih protsessov v poristo-setchatoy matritse rotornogo teploobmennika [Research of Thermal-Hydraulic Processes in Porous Net-Shaped Matrix for Rotary Regenerator]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2017, no. 1, pp. 129–140.
[20] Zarubin V.S. Matematicheskoe modelirovanie v tekhnike [Mathematical modeling in engineering]. Moscow, Bauman Press, 2010. 496 p.
[21] Kornev K.G. Peny v poristyh sredah [Foam in porous media]. Moscow, Fizmatlit publ., 2001. 192 p.
[22] Dimitrienko Yu.I., Ivanov M.Yu. Modelirovanie nelineynyh dinamicheskih protsessov perenosa v poristyh sredah [Modeling of Nonlinear Dynamical Processes of Transfer in Porous Media]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2008, no. 1, pp. 24–38.
[23] Ivanov M.Yu. Matematicheskoe modelirovanie dinamicheskih protsessov v deformiruemyh poristyh sistemah s fazovymi prevrashcheniyami. Diss. kand. fiz.-mat. nauk [Mathematical modeling of dynamic processes in deformable porous systems with phase transformations. Cand. phys&math sci. diss.]. Moscow, Bauman Press, 2014, 16 p.