Constraint Equations of Physical and Geometrical Parameters of an Arbitrary Branched Hydraulic System of the General Form
Authors: Demidov A.I., Bobarika I.O., Gusev I.N. | Published: 20.05.2019 |
Published in issue: #5(710)/2019 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: branched hydraulic system, hydraulic cylinder pressure, flow rate, power source, efficient flow distribution, system of equations |
The development trends of aviation technology impose stringent requirements for the quality of aircraft design in general and its onboard power systems in particular. The article considers an arbitrary branched hydraulic system of the aircraft. With known output characteristics of the hydraulic system, i.e. the function that it must perform, the internal parameters of the system that provide efficient flow distribution required for the calculated operation of the mechanisms are determined. The problem of obtaining a system of equations of the general form linking the physical parameters of the hydraulic system, such as supply power, pressure in consumers and flow rate in all functional subsystems, with the geometric parameters of the pipelines and consumers of the system is solved by an analytical method. The equations in the resulting system are considered in the space of physical parameters. As the geometric parameters of the elements are not specified in an explicit form, it allows the authors to obtain the only unique solution for an arbitrary number of pipelines and consumers, excluding an iterative process. Besides, the final equations clearly determine the most effective mode of operation of the power supply.
References
[1] Belevitin B.V., Fomichev V.M. Aviatsionnyy gidroprivod — sostoyanie i perspektiva. Datchiki i sistemy [Aviation hydraulic drive — state and perspective. Sensors and systems]. Moscow, Sensidat-Plyus publ., 2002, pp. 3–5.
[2] Aviatsionnye pravila AP–25. Normy letnoy godnosti transportnoy kategorii [Aviation rules AP–25. Airworthiness standards of the transport category]. Leningrad, LII im. M.M. Gromova publ., 1994. 321 p.
[3] Yakhnenko M.S., Bobarika I.O., Demidov A.I. Determining Pipeline Eigenfrequencies on the Basis of the Shock Response of Prefabricated Structures. Russian Engineering Research, 2018, vol. 38, no. 10, pp. 743–747, doi: 10.3103/S1068798X18100179
[4] Kulagin R.V., Stegaylo O.D., Stolerman A.I., Gusev I.N., Bobarika I.O., Demidov A.I. Integrated engineering analysis of the prefabricated pipeline structure of modern highly maneuverable aircrafts. Proceedings of Irkutsk State Technical University, 2016, no. 6(113), pp. 41–50 (in Russ.), doi: 10.21285/1814-3520-2016-6-41-49
[5] Shumilov I.S., Shtykov V.A. Hydraulic control systems for aircraft wing mechanization. The experience of their creation. Inzhenernyy vestnik, 2015, no. 1, pp. 7–29 (in Russ.). Available at: engsi.ru/file/out/756354 (accessed 15 December 2018).
[6] Levitskiy A.V., Sevost’yanov S.Ya. The project of the automated control system for remote deviation of the aileron aerodynamic model of the aircraft based on hydraulic power drive. Materialy XXVIII nauchno-tekhnicheskoy konferentsii po aehrodinamike Tsentral’nyy aehrogidrodinamicheskiy institut im. prof. N.E. Zhukovskogo [Proceedings of the XXVIII Scientific and Technical Conference on Aerodynamics. Central Aerohydrodynamic Institute. prof. named after N.E. Zhukovsky]. 2017, pp. 164–165.
[7] Borovin G.K., Popov D.N. Designing hydraulic power supply drives for industrial robots. Matematicheskoe modelirovanie, 1996, no. 9, pp. 43–53 (in Russ.).
[8] Bobarika I.O., Demidov A.I. Improvement suction lines of hydraulic systems taking into account cavitation. Trudy MAI, 2016, no. 85 (in Russ.). Available at: http://trudymai.ru/upload/iblock/fcc/bobarika_demidov_rus.pdf?lang=en&issue=85 (accessed 10 December 2018).
[9] Fedorov V.V., Afanas’ev S.V. The calculation of optimal diameters of hydraulic network using the convection-diffusion method of constrained minimization. Vektor nauki TGU, 2017, no. 2(40), pp. 62–67 (in Russ.), doi: 10.18323/2073-5073-2017-2-62-67
[10] Isaenko S.A., Medvedeva V.N., Shcherbashin Yu.D. Optimisation of calculation of hydraulic networks with dangling nodes. Eastern-European Journal of Enterprise Technologies, 2010, vol. 2, no. 4, pp. 20–27 (in Russ.).
[11] Odelʹskiy Eh.Kh. Gidravlicheskiy raschet truboprovodov raznogo naznacheniya [Hydraulic calculation of pipelines for different purposes]. Minsk, Vysshaya shkola publ., 1967. 103 p.
[12] Merenkov A.P., Khasilev V.Ya. Teoriya gidravlicheskikh tsepey [Theory of hydraulic circuits]. Moscow, Nauka publ., 1985. 279 p.
[13] Matveenko A.M., Zverev I.I. Proektirovanie gidravlicheskikh sistem letatel’nykh apparatov [Design of aircraft hydraulic systems]. Moscow, Mashinostroenie publ., 1998. 296 p.
[14] Bashta T.M. Gidravlika, gidromashiny i gidroprivody [Hydraulics, hydraulic machines and hydraulic drives]. Moscow, Mashinostroenie publ., 1982. 423 p.
[15] Al’tshul’ A.D. Gidravlicheskie soprotivleniya [Hydraulic resistance]. Moscow, Nedra publ., 1982. 224 p.
[16] Myshkis A.D. Ehlementy teorii matematicheskikh modeley [Elements of the theory of mathematical models]. Moscow, KomKniga publ., 2007. 192 p.
[17] Foks D.A. Gidravlicheskiy analiz neustanovivshegosya techeniya v truboprovodakh [Hydraulic analysis of unsteady flow in pipelines]. Moscow, Ehnergoizdat publ., 1981. 248 p.
[18] Bobarika I., Demidov A., Bukhanchenko S. Hydraulic model and algorithm for branched hydraulic systems. Procedia Engineering, 2017, no. 206, pp. 1522–1527, doi: 10.1016/j.proeng.2017.10.672
[19] Korneenko V.P. Metody optimizatsii [Optimization methods]. Moscow, Vysshaya shkola publ., 2007. 664 p.