The Experience of Non-Stationary Flow Visualization Using the Hydrogen Bubble Method
Authors: Krivel S.M., Bobarika I.O. | Published: 18.06.2019 |
Published in issue: #6(711)/2019 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: visualization of body flow, visualization of fluid flow, hydrogen bubble method, flow stall, flow spectrum, hydrodynamic pipe |
The study of the spectra of flow is carried out by experimental methods. The paper summarizes the authors’ experience in the design, construction and use of hydrodynamic installations for the visualization of liquid or gas flow using hydrogen bubbles obtained by electrolysis of water. The design of a vertical hydrodynamic pipe, the technology of making experimental models, the design and purpose of the main equipment are considered. Research methods and procedures are described. The article presents the results of the studies that make it possible to evaluate the capabilities of the experimental equipment and picture physical processes around the bodies that change the kinematic parameters of motion in the incident flow according to a given law. The proposed research methods and experimental equipment are distinguished by originality. They can be used to study the features of macrostructures around bodies of complex geometric shapes and laws of motion.
References
[1] Van Dayk. Al’bom techeniy zhidkosti i gaza. Moscow, Mir publ., 1986. (Russ. ed.: Van Dyke. An Album of Fluid Motion. Parabolic Press, 1982.)
[2] Ponomarev A.V., Guzeev A.S., Tyushkevich V.A. Metody vizualizatsii obtekaniya tel v sudostroitel’nom ehksperimente [Methods for visualization of the flow around bodies in a shipbuilding experiment]. Leningrad, Rumb publ., 1987. 114 p.
[3] Clutter D.B., Smith A.M. Flow visualization by electrolysis of water. Aerospace Engineering, 1961, no. 2, pp. 24–27.
[4] Asanuma T., Takeda S. A study on the flow visualization by the Hydrogen-Bubble Method. Bulletin of JSME, 1965, vol. 8, no. 32, pp. 599–608.
[5] Davis W., Fox R.W. An Evaluation of the Hydrogen Bubble Technique for the Quantitative Determination of Fluid Velocities Within Clear Tubes. Journal of Basic Engineering, 1967, vol. 89, pp. 771–777, doi: 10.1115/1.3609701
[6] Pivkin E.Ya., Cheremukhin G.A. Hydraulic pipe “toy” or tool. Tekhnika vozdushnogo flota, 2002, no. 5, pp. 13–16 (in Russ.).
[7] Dargahi D. The turbulent flow field around a circular cylinder. Experiments in Fluids, 1989, no. 8, pp. 1–12, doi: 10.1007/BF00203058
[8] Golovkin M.A., Golovkina E.V. Flow Structure Visualization near Aircraft Models in Low-Speed Water Tunnel (Aircraft Aerodynamic Configurations). Trudy MAI, 2016, no. 90, p. 5. Available at: http://www.trudymai.ru/published.php?ID=74692&eng=N (accessed 15 March 2019).
[9] Avramenko M.Ya., Vinokurov A.S., Ermolaev V.A., Krivel’ S.M., Razuvaev D.V. Ehksperimental’nye issledovaniya vrashchayushchikhsya v nabegayushchem potoke plokhoobtekaemykh tel v gidrodinamicheskoy trube. Sbornik nauchnykh trudov ad’’yunktov i soiskateley, Vyp. 7. Irkutsk, IVAII, 2002, s. 72–74.
[10] Goryainov A.M., Zavolzhenskiy A.E., Krivel’ S.M. Investigation of the flow spectra of rotating objects in a free-flowing stream. 24 Rossiyskaya shkola po problemam nauki i tekhnologiy, posvyashchennaya 80-letiyu so dnya rozhdeniya akademika V.P. Makeeva. Tez. dokl. [24 Russian School on Science and Technology, dedicated to the 80th birthday of academician V.P. Makeev. Abstracts]. Miass, MSNT publ., 2004. 36 p.
[11] Goryainov A.M., Zavolzhenskiy A.E., Krivel’ S.M. Experience of using flow visualization in hydrodynamic studies. Intellektual’nye i material’nye resursy Sibiri. Sb. nauch. tr. [Intellectual and material resources of Siberia. Collection of scientific papers]. Irkutsk, BGUEHP publ., 2005, pp. 226–232.
[12] Goryainov A.M., Zavolzhenskiy A.E., Krivelʹ S.M. Experience in visualization of flows in hydrodynamic studies using hydrogen bubbles and inks. Golografiya: fundamentalʹnye issledovaniya, innovatsionnye proekty i nanotekhnologii. Mater. 26 shkoly po kogerentnoy optike i golografii [Holography: basic research, innovative projects and nanotechnology. Materials 26 schools on coherent optics and holography]. Irkutsk, Papirus publ., 2008, pp. 241–245.
[13] Akulov O.V., Krivel’ S.M. Modeling of currents in hydrodynamic studies using the hydrogen bubble method. Informatsionnye sistemy kontrolya i upravleniya v promyshlennosti i na transporte. Sb. nauch. tr. [Information systems of control and management in industry and transport. Collection of scientific papers]. Irkutsk, IrGUPS publ., 2009, iss. 16, pp. 20–27.
[14] Kulashev M.F., Shakhov V.G., Chapaev V.F. Kamera dlya vizualizatsii obtekaniya tel ploskim potokom zhidkosti [A camera for visualizing the flow of bodies around a plane fluid flow]. A. s. no. 726456 USSR, 1980.
[15] Kornilov V.I. Prostranstvennye pristennye turbulentnye techeniya v uglovykh konfiguratsiyakh [Spatial near-wall turbulent flows in angular configurations]. Novosibirsk, Nauka. Sibirskaya izdatelʹskaya firma RAN publ., 2000. 399 p.
[16] Hydrogen Bubble Flow Visualization Unit. Available at: http://www.edibon.com/ru/area/8-fluid-mechanics/8-4-flow-visualization (accessed 24 February 2019).