Designing frames of integrated cfrp solar panels for spacecraft
Authors: Galinovsky A.L., Denisov A.V., Gavrilova E.A., Denisova M.A., Chertov V.G., Eremin S.A. | Published: 16.12.2019 |
Published in issue: #12(717)/2019 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: solar cell, composite materials, integral frame, load-bearing capacity and stiffness, specific gravity |
This article deals with the problem of ensuring the competitiveness of space systems by increasing the energy and mass efficiency of solar panels. It provides a review of modern designs of the solar panel frames intended for use in spacecraft, and a choice of design and technological solutions for the creation of integrated structures of the solar panel frames with a low specific weight. A model of a composite integrated frame is developed that ensures the bearing capacity of the solar panel at a given static gravitational load at the time of launch and in operation. The results of the selection of rational parameters for the elements of the integrated solar panel frame are given. The results obtained in the framework of the adopted assumptions and the initial characteristics of the polymer composite materials warrant the possibility of realization of the specific gravity in the range of 0.55–0.65 kg/m2, with a regulated load bearing capacity and stiffness, thereby complying with the world trends for objects of this class. Using the proposed design, it is possible to place lens concentrators over the photovoltaic converters installed on the frame, which in turn can significantly increase the specific power of the solar cell.
References
[1] Gardymov G.P., Meshkov E.V., Pchelintsev A.V., Lashmanov G.P. Kompozitsionnyye materialy v raketno-kosmicheskom apparatostroyenii [Composite materials in space rocket engineering]. Sankt-Petersburg, SpetsLit publ., 1999. 271 p.
[2] Urmansov F.F., Shchepalin V.I., Voronin A.A., Denisov A.V. Konstruktsiya karkasov solnechnykh batarey i sposob izgotovleniya karkasa [The design of the frames of solar panels and a method of manufacturing a frame]. Patent no. 2352024 RF, 2009, 5 p.
[3] Borshchev V.N., Antonova V.A., Listratenko A.M., Shkol’nyy S.M. Design studies of the spacecraft solar panel frames. Vestnik NTU “KHPI”, 2005, no. 47, pp. 21–29 (in Russ.). Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/2568
[4] Galkin V.V. Solar Panels and Storage Batteries of the Joint Stock Company “Saturn” for Spacecraft with Electric Propulsion. Trudy MAI, 2012, iss. 60 (in Russ.). Available at: http://trudymai.ru/published.php?ID=35383 (accessed 15 September 2019).
[5] Slivinskiy V.I., Tkachenko G.V., Slivinskiy M.V., Gaydachuk V.E., Gaydachuk A.V. New concept for weight optimization of honeycomb stractures used in solar panel frames and unpressurized panels of space vehicles. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M.F. Reshetneva, 2008, no. 1, pp. 136–141 (in Russ.).
[6] Kovalenko V.A., Kondrat’yev A.V., Shevtsova M.A., Gagauz I.G. Model of the carcass lattice structure of the test solar panel of spacecraft. Open Information and Computer Integrated Technologies, 2013, no. 58, pp. 89–97 (in Russ.).
[7] Bayborodov A.A., Vasil’yeva T.S., Volkov M.V., Kuznetsov A.D., Dvirnyy V.V. Solar panels with luminous concentrators. Problemy razrabotki, izgot ovleniya i ekspluatatsii raketno-kosmicheskoy tekhniki i podgotovki inzhenernykh kadrov dlya aviakosmicheskoy otrasli. Materialy XI Vserossiyskoy nauchnoy konferentsii, posvyashchennoy pamyati glavnogo konstruktora PO «Polet» A.S. Klinyshkova [Problems of development, manufacture and operation of rocket and space technology and training of engineering personnel for the aerospace industry. Materials of the XI All-Russian scientific conference dedicated to the memory of the chief designer of PO Flight A.S. Klinyshkova]. Omsk, 2017, pp. 16–21.
[8] Kuzoro V.I., Khalimanovich V.I., Kalinovskiy V.S., Vasil’yeva T.S. Panel’ solnechnoy batarei [Solar panel]. Patent no. 2575182 RF, 2016, 7 p.
[9] Bitkina E.V., Denisov A.V., Bitkin V.E. Design — engineering methods of creating of dimensionally stable space structures of integrated type made of composite materials. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4(2), pp. 555–560 (in Russ.).
[10] Bitkin V.E., Denisov A.V., Denisova M.A., Zhidkova O.G., Nazarov E.V., Rogal’skaya O.I., Melent’yev A.V., Mizinova I.A. Approbation of the technological complex of production the power and high-precision size-stable integrated type construction elements from fibrous composite materials. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2014, vol. 16, no. 1(5), pp. 1320–1327 (in Russ.).
[11] Bitkin V.E., Denisov A.V., Zhidkova O.G., Bitkina O.V. Technological complex for manufacturing of high-precision dimensionally stable composite elements of structures of integrated type. Konstruktsii iz kompozitsionnykh materialov, 2014, iss. 1, pp. 18–23 (in Russ.).
[12] Molodtsov G.A., Bitkin V.E., Simonov V.F., Urmansov F.F. Formostabil’nyye i intellektual’nyye konstruktsii iz kompozitsionnykh materialov [Form-stable and intelligent composite structures]. Moscow, Mashinostroyeniye publ., 2000. 352 p.
[13] Vasil’yev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroyeniye publ., 1988. 272 p.
[14] Zimin V.N., Borzykh S.V. Mekhanika transformiruyemykh krupnogabaritnykh kosmicheskikh konstruktsiy. V 2 ch. Ch. 1. Solnechnyye batarei kosmicheskikh apparatov [Mechanics of transformable large-sized space structures. Pt. 1. Solar batteries of spacecraft]. Moscow, Bauman Press, 2012. 64 p.
[15] Zenkevich O. Metod konechnykh elementov v tekhnike [The finite element method in technology]. Moscow, Mir publ., 1975. 540 p.
[16] Shimkovich D.G. Raschet konstruktsiy v MSC.visual NASTRAN for Windows [Structural Analysis in MSC.visual NASTRAN for Windows]. Moscow, DMK Press, 2004. 700 p.
[17] MSC.NASTRAN Quick Reference Guide.