A Calculation Procedure for Strength Analysis of Wave Guides for Ensuring Improved Mass-Dimensional Parameters
Authors: Kudryavtsev I.V., Mikhnev M.M., Silchenko P.N. | Published: 27.05.2020 |
Published in issue: #5(722)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: spacecraft, non-axisymmetric cross section, wave guide strength, stiffness of wave guide sections, radio engineering characteristics, mass-dimensional parameters |
This paper presents a calculation procedure for designing waveguides with iproved mass-dimensional parameters, which ensures the required strength and stiffness characteristics under static, dynamic and deformational loads. The procedure is based on the analysis of methods for determining the stress-strain state of the waveguide-and-distribution systems of spacecraft. The first stage of the procedure involves modelling the waveguide-and-distribution systems in a general formulation by a rod structure with equivalent loading and fixing conditions and determining the stress-strain state of such a system. At the second stage, local areas with the maximum stress-strain state values are selected for a further refined analysis in the rod system. An evaluation of the influence of the waveguide wall thickness on the general stress-strain state is performed. It is shown that when the waveguide wall thickness varies in the range of 0.25 – 2.50 mm, the strength and stiffness of its sections under static loads basically follow the linear law. It is established that under dynamic loading the wall thickness has almost no effect on the resultant stress-strain state of the waveguide arising under the influence of forced fluctuations and quasi-static loading owing to its dependence on the ratios of mass, moments of inertia and resistance, which for some standard sizes of the waveguides will be almost constant. The equations obtained for the rod system cannot be used for evaluating the influence of the wall thickness on local stress-strain state in the form of wall deflection, local loss of stability, etc. In view of this, at the second stage of modelling local areas of interest are selected and transformed into 3D thin-walled structures, with translation into finite element method programs for a more exact analysis. In the future, the proposed technique can be used to solve connected problems of interrelation and the influence of cross-sectional deformations in local zones of the waveguide on the changes in electromagnetic fields with the formation of parasite waves. This will significantly improve the quality of radio engineering characteristics of the waveguide and distribution systems while ensuring their strength, stiffness and minimal mass-dimensional parameters.
References
[1] Sil’chenko P.N., Mikhnev M.M., Ankudinov A.V., Kudryavtsev I.V. Ensuring the strength and accuracy of large-size waveguide distribution systems of communication satellites. Journal of Machinery Manufacture and Reliability, 2012, vol. 41, no. 1, pp. 91–95, doi: 10.3103/S1052618811060173
[2] GOST P 20900–2014. Truby volnovodnyye mednyye i latunnyye pryamougol’nyye. Tekhnicheskiye usloviya [State Standard R 20900–2014. Copper tubing for waveguides and brass right angle tubes. Specifications]. Moscow, Standartinform publ., 2015. 14 p.
[3] Feodos’yev V.I. Soprotivleniye materialov [Strength of materials]. Moscow, Bauman Press, 2016. 543 p.
[4] Darkov A.V., Shaposhnikov N.N. Stroitel’naya mekhanika [Structural mechanics]. Sankt-Petersburg, Lan’ publ., 2005. 656 p.
[5] Novozhilov.V.V., Chernykh K.F., Mikhaylovskiy E.I. Lineynaya teoriya tonkikh obolochek [Linear theory of thin shells]. Sankt-Petersburg, SPBU publ., 2010. 380 p.
[6] Myachenkov V.I., Grigor’yev I.V. Raschet sostavnykh obolochechnykh konstruktsiy na EVM [Calculation of composite shell structures on a computer]. Moscow, Mashinostroyeniye publ., 1981. 216 p.
[7] Timoshenko S.P., Gud’yer Dzh. Teoriya uprugosti [Elasticity theory]. Moscow, Nauka publ., 1975. 576 p.
[8] Sneddon I.N., Berri D.S. Klassicheskaya teoriya uprugosti [Classical theory of elasticity]. Moscow, Vuzovskaya kniga publ., 2008. 216 p.
[9] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N. Method of Stress-Deformation Distribution Computation for Waveguide Spacecraft Systems. Journal of Siberian Federal University. Engineering & Technologies, 2012, no. 2, pp. 150–161 (in Russ.).
[10] Polyanin A.D., Nazaikinskii V.E. Handbook of Linear Partial Differential Equations for Engineers and Scientists. Boca Raton–London, CRC Press, 2016. 1632 p.
[11] Polyanin A.D., Zaytsev V.F., Zhurov A.I. Metody resheniya nelineynykh uravneniy matematicheskoy fiziki i mekhaniki [Methods for solving nonlinear equations of mathematical physics and mechanics]. Moscow, Fizmatlit publ., 2005. 256 p.
[12] Timoshenko S. P., Voynovskiy-Kriger S. Plastinki i obolochki [Plates and shells]. Moscow, URSS publ., 2009. 635 p.
[13] Gavryushin S.S., Baryshnikova O.O., Boriskin O.F. Chislennyy analiz elementov konstruktsiy mashin i priborov [Numerical analysis of structural elements of machines and devices]. Moscow, Bauman Press, 2014. 479 p.
[14] Galanin M.P. Metody chislennogo analiza matematicheskikh modeley [Methods of numerical analysis of mathematical models]. Moscow, Bauman Press, 2012. 591 p.
[15] Hartmann F., Katz C. Structural Analysis with Finite Elements. Berlin, Springer, 2004. 484 p.
[16] Ern A., Guermond J.L. Theory and Practice of Finite Elements (Applied Mathematical Sciences). Berlin, Springer, 2004. 526 p.
[17] Solin P. Partial Differential Equations and the Finite Element Method. New Jersey, Wiley-Interscience, 2005. 504 p.
[18] GOST RV 20.57.305–98. Kompleksnaya sistema kontrolya kachestva. Apparatura, pribory, ustroystva i oborudovaniye voyennogo naznacheniya. Metody ispytaniy na vozdeystviye mekhani-cheskikh faktorov [State Standard RV 20.57.305–98. Integrated quality control system. Apparatus, instruments, devices and equipment for military use. Mechanical Test Methods]. Moscow, Standartinform publ., 2001. 54 p.
[19] Kudryavtsev I.V., Sil’chenko P.N., Mikhnev M.M., Gotselyuk O.B. Comparative Evaluation of Differential Equation Solutions in the Problem of Waveguide Straight Sections Bend in Communication Spacecraft. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2017, no. 1, pp. 4–23 (in Russ.), doi: 10.18698/0236-3941-2017-1-4-23
[20] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin N.V., Gotselyuk O.B., Barykin E.S. Staticheskiy analiz prochnostnykh parametrov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Static analysis of the strength parameters of folded thin-walled cladding designs of waveguides with a closed cross section]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM no. 2012661200, 2012.
[21] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Sin’kovskiy F.K. Kvazistaticheskiy analiz skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov [Quasistatic analysis of folded thin-walled cladding designs of waveguides]. Certificate of state registration of a computer program no. 2012661201, 2012.
[22] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N. Modal’nyy analiz skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Modal analysis of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661204, 2012.
[23] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Gotselyuk O.B. Analiz vynuzhdennykh kolebaniy skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Analysis of forced vibrations of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661199, 2012.
[24] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Sin’kovskiy F.K. Termouprugiy analiz pryamykh elementov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Thermoelastic anal-ysis of the direct elements of folded thin-walled cladding designs of waveguides with a closed cross section]. Certificate of state registration of a computer program no. 2012661202, 2012.
[25] Testoyedov N.A., Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Khalimanovich V.I., Nagovitsin V.N., Sin’kovskiy F.K. Termouprugiy analiz krivolineynykh elementov skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem [Thermoelastic analysis of curved elements of folded thin-walled cladding structures of waveguides with a closed cross section]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM no. 2012661203, 2012.
[26] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N., Gotselyuk O.B. Modul’ eksporta lokal’nogo uchastka sterzhnevoy modeli skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem v tverdotel’nuyu model’ Nastran [The module for exporting the local section of the core model of folded thin-walled cladding structures of closed-section waveguides into the Nastran solid-state model]. Certificate of state registration of a computer program no. 2012661197, 2012.
[27] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Nagovitsin V.N., Gotselyuk O.B. Modul’ eksporta lokal’noy oblasti skladchatykh tonkostennykh obolochechnykh konstruktsiy volnovodov s zamknutym poperechnym secheniyem iz sterzhnevoy modeli v tverdotel’nuyu model’ Ansys [The module for exporting the local region of folded thin-walled cladding designs of waveguides with a closed cross section from the rod model to the Ansys solid-state model]. Certificate of state registra-tion of a computer program no. 2012661198, 2012.
[28] Pisarenko G.S. Spravochnik po soprotivleniyu materialov [Material Resistance Reference]. Kiev, Naukova dumka publ., 1988. 736 p.
[29] Gorshkov A.G. Soprotivleniye materialov [Strength of materials]. Moscow, FIZMATLIT publ., 2005. 544 p.
[30] Sil’chenko P.N., Kudryavtsev I.V., Mikhnev M.M., Gotselyuk O.B. A Refined Solution to the System of Differential Equations in the Problem of Bending in Thin-Shell Waveguide Structures. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2017, no. 5(116), pp. 4–21 (in Russ.), doi: 10.18698/0236-3941-2017-5-4-21
[31] Sil’chenko P.N., Kudryavtsev I.V., Gotselyuk O.B., Novikov E.S. Method of Analysis of Extended Thin-Walled Constructions with not Axisymmetric Cross Section. Science and Education of BMSTU, 2014, no. 11, pp. 724–747, doi: 10.7463/1114.0737276