An Evaluation of Performance Characteristics of Short-Fiber Basalt Insulation at Cryogenic Temperatures
Authors: Komkov M.A., Timofeev M.P., Larionova A.V. | Published: 01.08.2020 |
Published in issue: #7(724)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: cryogenic temperature, high-porosity thermal insulation, short basalt fibers, filtrational settling, compression strength |
This work shows the potential of highly porous thermal insulation made of short basalt super-thin fibers chopped using liquid technology for insulating cryogenic piping. The effective heat conductivity coefficient, maximum-permissible porosity and insulation density were determined for short basalt fibers with a mean diameter of 1.88 mcm and a length of 1.0–1.5 mm, taking into account radiation heat transfer. The results of compression tests are presented for highly porous flat insulation samples made of short basalt fibers without binding agents and those reinforced with Al2O3. It is established that the thermal insulation material containing a binding agent has the strength, elasticity modulus and elastic compression deformation two times higher than samples without a mineral binding agent.
References
[1] Andreyev V.A., Borisov V.D., Klimov V.T. Vnimaniye: gazy. Kriogennoye toplivo dlya aviatsii: Spravochnik-vospominaniye dlya vsekh [Caution: gases. Cryogenic Fuel for Aviation: A Handbook for All]. Moscow, Moskovskiy rabochiy publ., 2001. 223 p.
[2] Mokhov V. The first 12KRB overclocking unit sent to India. Novosti kosmonavtiki, 1998, no. 21/22, pp. 42–43 (in Russ.).
[3] Zhuravin Yu. The Sea of Angara Plans. Novosti kosmonavtiki, 1999, no. 3(194), pp. 48–49 (in Russ.).
[4] Patrunov F.G. Nizhe 120 gradusov po Kel’vinu [Below 120 degrees Kelvin]. Moscow, Znaniye publ., 1989. 176 p.
[5] Fedorov G., Maksimovich G. The plane of tomorrow — Tu-155 on hydrogen fuel: ANTK named after A.N. Tupolev. Kryl’ya Rodiny, 1989, no. 6.
[6] Arkharov A.M., Kunis I.D. Kriogennyye zapravochnyye sistemy startovykh raketno-kosmicheskikh kompleksov [Cryogenic refueling systems of launch rocket and space complexes]. Moscow, Bauman Press, 2006. 252 p.
[7] Kryakovkin V.P., Klebleyev T.I., Lenskiy A.B. Cryogenic pipelines: from designing to putting into operation. Tekhnicheskiye gazy, 2014, no. 4, pp. 67–71 (in Russ.).
[8] Komkov M.A., Badanina Yu.V., Potapov D.A., Novikova A.S. Cryogenic pipeline with short fiber basalt insulation. Engineering Journal: Science and Innovation, 2018, iss. 11 (in Russ.). Available at: http://dx.doi.org/10.18698/2308-6033-2018-11-1825, doi: 10.18698/2308-6033-2018-11-1825
[9] Badanina Yu.V. Tekhnologicheskoye proyektirovaniye vysokoporistykh teploizoliruyushchikh konstruktsiy iz korotkikh bazal’tovykh volokon na osnove metoda zhidkostnoy fil’tratsii. Kand. Diss. [Technological design of highly porous insulating structures made of short basalt fibers based on the liquid filtration method. Cand. Diss.]. Moscow, Bauman Press, 2017. 16 p.
[10] Badanina Yu.V., Komkov M.A., Tarasov V.A., Timofeyev M.P., Moiseyev A.V. Simulation and Experimental Determination of Technological Liquid Molding Parameters of Tubing Basalt Insulation. Science and Education of BMSTU, 2015, no. 04, pp. 13–28 (in Russ.), doi: 10.7463/0315.0761820
[11] Komkov M.A., Moiseyev V.A., Tarasov V.A., Timofeyev M.P. Minimization of negative influence on the biosphere in heavy oil extraction and ecologically clean technology for injection of steam with supercritical parameters on the basis of new ecologically clean tubing pipes with heat-resistant coatings. Geofizicheskiye protsessy i biosfera, 2015, vol. 14, no. 1, pp. 70–79 (in Russ.).
[12] Komkov M.A., Badanina Yu.V., Tarasov V.A., Filimonov A.S. Analysis of structural and thermal-physical characteristics of high-porosity basalt thermal insulation for tubing. Engineering Journal: Science and Innovation, 2017, no. 1(61) (in Russ.). Available at: http://engjournal.ru/eng/catalog/msm/smme/1575.html, doi: 10.18698/2308-6033-2017-1-1575
[13] Timofeyev M.P. Razrabotka i issledovaniye fil’tratsionnoy tekhnologii izgotovleniya izdeliy iz voloknistykh neorganicheskikh materialov. Kand. Diss. [Development and research of filtration technology for manufacturing products from fibrous inorganic materials. Cand. Diss.]. Moscow, Bauman Press, 2007. 16 p.
[14] Komkov M.A., Potapov D.A., Kudryavtsev A.A. Optimizing the angle of winding carbon fiber reinforced plastic on the metal liner of the cryogenic pipeline. Engineering Journal: Science and Innovation, 2017, iss. 9 (in Russ.). Available at: http://dx.doi.org/10.18698/2308-6033-2017-9-1673, doi: 10.18698/2308-6033-2017-9-1673
[15] Bulanov I.M., Komkov M.A. The use of hard polymer films in cryogenic fuel systems of aerospace engineering. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 1992, no. 1, pp. 14–24 (in Russ.).
[16] Sabel’nikov V.V., Komkov M.A., Samoryadov A.V. Bonding technology for cryogenic pipeline elements. Klei. Germetiki. Tekhnologii, 2005, no. 1, pp. 16–20 (in Russ.).
[17] Komkov M.A., Sabel’nikov V.V., Baslyk K.P. Structural and technological analysis of pipelines made of polyimide film by winding. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2012, spec. iss. 3, pp. 78–86 (in Russ.).
[18] Dzhigiris D.D., Makhova M.F. Osnovy proizvodstva bazal’tovykh volokon i izdeliy [Basics of the production of basalt fibers and products]. Moscow, Teploenergetik publ., 2002. 411 p.
[19] Maty proshivnyye iz bazal’tovogo supertonkogo volokna (MPBSTV) po TU 5762-002-47897055–2003 [Stitched mats from basalt superthin fiber (MPBST) according to TU 5762-002-47897055-2003]. Available at: https://bztm.su/catalog/teploizolyatsiya/maty-proshivnye/ (accessed 15 September 2019).
[20] Bazal’tovoye supertonkoye volokno “MINOL”. Zavod BSTV “MINOL” [Basalt superthin fiber “MINOL”. Factory BSTV “MINOL”.]. Available at: http://www.bztm.su/bstv.php (accessed 05 September 2019).
[21] Metodika otsenki vliyaniya vlazhnosti na effektivnost’ teploizolyatsii oborudovaniya i truboprovodov. MDS 41-7.2004 [Methodology for assessing the effect of humidity on the efficiency of thermal insulation of equipment and pipelines. MDS 41-7.2004]. Available at: http://www.gosthelp.ru/text/MDS4172004Metodikaocenkiv.html (accessed 25 September 2019).
[22] Tarasov V.A., Smirnov Yu.V., Timofeyev M.P., Filimonov A.S. Modes of filtration deposition of thermal protection elements of the RCT. All-Russian Scientific-Technical Journal Flight, 2007, no. 5, pp. 52–55 (in Russ.).
[23] Badanina Yu.V., Komkov M.A., Tarasov V.A., Timofeyev M.P. Study of the effect of acidity on the process of filtration and deposition of aluminum hydroxide on short-fiber basalt insulation. Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 8, pp. 23–28 (in Russ.), doi: 10.31044/1994-6260-2018-0-8-23-28
[24] Badanina Yu.V., Komkov M.A., Tarasov V.A., Timofeev M.P. Analysis of the Effect of Hydromass Acidity on the Process of Filtration and Precipitation of Aluminum Oxide in Short-Fiber Basalt Heat Insulation. Polymer Science – Series D, 2019, vol. 12, iss. 1, pp. 72–76, doi: 10.1134/S1995421219010027