The Selection of the Reinforcement Scheme for a Parabolic Antenna Made of Composite Materials with an Elliptical Aperture Line
Authors: Galinovsky A.L., Denisov A.V., Gavrilova E.A., Gordeev S.A., Alshina S.A., Eremin S.A. | Published: 15.09.2020 |
Published in issue: #9(726)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: mirror antenna reflector, elliptical notch, narrow radiation pattern, composite materials |
Being prepared foThe problems of designing and calculating reinforced shells of revolution made of composite materials as constituent elements of parabolic antennas with an elliptical aperture line having a focal parameter value of not more than 0.03 m are examined in this paper. The structural layout schemes of reflectors of the parabolic-type mirror spacecraft antennas are reviewed. A technique for designing a bearing frame for reinforcing the reflector shell using numerical analysis based on the finite element method is presented. The technique is based on the assessment of the stiffness parameters of the structural elements of the reflector located between the annular ribs. It utilizes optimization in order to achieve a constant gradient of changes in the stiffness parameters. The deformability of the reflector design that uses a modern high-modulus composite material is evaluated. A finished product is presented as the result of the application of the technique. An assessment of manufacturing and design errors is performed based on the experimental data. The proposed approach to the design of reflectors with an elliptical aperture line eliminates warping of the molded product and deformation during operation such as twisting in the form of a propeller. The results of the study can be used for designing reflectors of spacecraft mirror antennas with a narrow radiation pattern that meet strict requirements of the accuracy of the reflecting surface geometry as well as mass restrictions.
References
[1] Bakhrakh L.D., Galimov G.K. Zerkal’nyye skaniruyushchiye antenny. Teoriya i metody rascheta [Mirror Scanning Antennas. Theory and calculation methods]. Moscow, Nauka publ., 1981. 293 p.
[2] Imbriale W.A., Gao S., Boccia L. Space Antenna Handbook. United Kingdom, John Wiley & Sons Ltd., 2012. 741 p.
[3] Alfutov N.A. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroyeniye publ., 1984. 264 p.
[4] Vasil’yev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroyeniye publ., 1988. 272 p.
[5] Sputnik svyazi YAMAL-401 [YAMAL-401 communications satellite]. Available at: http://www.iss-reshetnev.ru/projects (accessed 18 March 2020).
[6] Designing for dimensional stability in space. URL: http://www.compositesworld.com/articles/designing-for-dimensional-stability-in-space (accessed 18 March 2020).
[7] Taygin V.B., Lopatin A.V. Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector. Spacecrafts & Technologies, 2019, no. 3(29), pp. 121–131 (in Russ.), doi: 10.26732/2618-7957-2019-3-121-131
[8] Simonov V.F., Urmansov F.F., Molodtsov G.A., Bitkin V.E., Denisov A.V., Vladimirova M.A. Razmerostabil’noye integral’noye izdeliye iz kompozitsionnykh materialov, sposob ego izgotovleniya i forma dlya osushchestvleniya sposoba [Size-stable integral product made of composite materials, method for its manufacture and form for implementing the method]. Patent RU no. 2230406 C2, 2001.
[9] Novikov A.D., Prosuntsov P.V., Reznik S.V. Mirror space antenna reflector made of composite materials constructive appearance determination. Vestnik RUDN. Ser. Inzhenernyye issledovaniya, 2017, vol. 18, no. 3, pp. 308–317 (in Russ.), doi 10.22363/2312-8143-2017-18-3-308-317
[10] Babkina L.A., Sorokin D.V. Parametric analysis of the spacecraft parabolic antenna with a multivariate reinforcement scheme. Engineering Journal: Science and Innovation, 2017, iss. 4 (in Russ.), doi: 10.18698/2308-6033-2017-4-1611
[11] Savin S.A., Bitkin V.E., Denisov A.V., Kashtanov P.P., Gavrilova E.A., Savel’yeva E.V., Nazarov E.V., Ermokhin M.A., Eremin S.A. Konstruktsiya reflektora zerkala antennogo iz polimernykh kompozitsionnykh materialov [Antenna mirror reflector design made of polymer composite materials]. Patent no. 2640955 RF, 2018, 8 p.
[12] Berdnikova N.A., Ivanov A.V., Belov O.A., Chichurin V.E. Design of the large-size high-precision reflector of the spacecraft antenna with the planimetric directional diagram. Vestnik SibGAU, 2016, vol. 17, no. 2, pp. 378–387 (in Russ.).
[13] Bitkina E.V., Denisov A.V., Bitkin V.E. Design-engineering methods of creating of dimensionally stable space structures of integrated type made of composite materials. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2012, vol. 14, no. 4(2), pp. 555–560 (in Russ.).
[14] Bitkin V.E., Denisov A.V., Denisova M.A., Zhidkova O.G., Nazarov E.V., Rogal’skaya O.I., Melent’yev A.V, Mizinova I.A. Approbation of the technological complex of production the power and high-precision size-stable integrated type construction elements from fibrous composite materials. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, no. 1-5, pp. 1320–1327 (in Russ.).
[15] Molodtsov G.A., Bitkin V.E., Simonov V.F., Urmansov F.F. Formostabil’nyye i intellektual’nyye konstruktsii iz kompozitsionnykh materialov [Shaped and intelligent composite structures]. Moscow, Mashinostroyeniye publ., 2000. 352 p.
[16] Mikhaylovskiy K.V., Reznik S.V. Development of mathematical and algorithmic support for determination of internal stresses in thin reflectors made of carbon-epoxy composite during the technological process of manufacturing. Science and Education of BMSTU, 2013, no. 8, pp. 151–166 (in Russ.), doi: 10.7463/0813.0612095
[17] Torayca Everywhere. Available at: https://www.torayca.com/activity/act_005.html (accessed 15 March 2020).
[18] Aristov V.F., Khalimanovich V.I., Mironovich V.V., Islent’yeva T.A., Gurov D.A. Cyanate ester coupling agents in aerospace industry. Catalytic properties of organometallic complexes and diazonium salts with complex anions in the curing reaction of cyanate ester coupling agents. Vestnik SibGAU, 2013, no. 2(48), pp. 159–165 (in Russ.).
[19] Zienkiewicz O.C. The finite element method in engineering science. London, McGraw-Hill, 1971. 521 p. (Russ. ed.: Zenkevich O. Metod konechnykh elementov v tekhnike. Moscow, Mir publ., 1975. 540 p.).
[20] Shimkovich D.G. Raschet konstruktsiy v MSC.vsual NASTRAN for Windows [Structural Analysis in MSC.vsual NASTRAN for Windows]. Moscow, DMK Press, 2004. 700 p.
[21] Nastran MSC.Quick reference guide. USA, MSC Software Corporation, 2011.