An Analysis of the Efficiency of Electric Propulsion Engines for Maintaining a Low Orbit of Small Spacecraft
Authors: Volotsuev V.V., Salmin V.V. | Published: 25.09.2020 |
Published in issue: #10(727)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: small spacecraft, electric propulsion engine, low orbit, orbit correction |
This paper examines the problem of maintaining the plane parameters of the working orbit of a small spacecraft using an electric propulsion engine. In low working orbits, due to the Earth’s atmosphere, a spacecraft is subjected to aerodynamic drag forces, which results in a decrease in the radius of the orbit and a potential termination of the useful target functioning. The time parameters of the cyclogram for maintaining the working orbit of a small spacecraft with an electric low thrust engine are analyzed taking into account the variability of the atmospheric density. The cyclogram consists of sections of the passive and active movement under the action of the low thrust engine. For the satellite under study, suitable thrust parameters of the electric engine are selected, which allow the correction of the plane parameters of the low orbit. Using the characteristics of the thrust and specific impulse of the electric jet engine, fuel reserves for correction over a long period of time are calculated. The results of the analysis confirm the effectiveness of the electric propulsion engine in terms of fuel consumption for correction.
References
[1] Earth Observation Portal. Tacsat-2. Available at: https://eoportal.org/web/eoportal/ satellite-missions/content/-/article/tacsat2 (accessed 15 February 2020).
[2] Izvestkov I. Space forces launch European satellite. Novosti kosmonavtiki, 2009, vol. 19, no. 5(316), pp. 38–42 (in Russ.).
[3] About Super Low Altitude Test Satellite “TSUBAME” (SLATS). Available at: https://global.jaxa.jp/projects/sat/slats (accessed 15 February 2020).
[4] The Japanese satellite set a record. Unusual ion engine mode. Available at: https://naukatehnika.com/yaponskij-sputnik-ustanovil-rekord.html (accessed 15 February 2020).
[5] Kiselev K.V., Medvedikov I.A., Khodnenko A.V., Khromov V.A., Shlyakonov L.V. Results of flight tests of the corrective propulsion system with the SPD-50 engine on Board the Canopus-B spacecraft. Voprosy elektromekhaniki. Trudy VNIIEM, 2013, vol. 137, pp. 7–14 (in Russ.).
[6] Kirilin A.N., Akhmetov R.N., Shakhmatov E.V, Tkachenko S.I., Goryachkin O.V. Opytno-tekhnologicheskiy malyy kosmicheskiy apparat “AIST–2D” [Experimental and technological small spacecraft “AIST–2D”]. Samara, SamNTS RAN publ., 2017. 324 p.
[7] Salmin V.V., Volotsuyev V.V., Shikhanov S.V. Spacecraft preset orbital parameters control by means of thrusters. Vestnik of Samara University. Aerospace and Mechanical Engineering, 2013, no. 4(42), pp. 248–254.
[8] Duboshin G.N. Spravochnoye rukovodstvo po nebesnoy mekhanike i astrodinamike [Reference guide to celestial mechanics and astrodynamics]. Moscow, Nauka publ., 1976. 864 p.
[9] Salmin V.V., Volotsuev V.V., Tkachenko S. I., Kaurov I.V. Improving the Efficiency of Earth Monitoring Missions by Equipping Small Spacecraft AIST-2 with Electric Propulsion. Procedia Engineering, 2017, vol. 185, pp. 198–204, doi: 10.1016/j.proeng.2017.03.300
[10] Salmin V.V., Volotsuev V.V., Safronov S.L, Tkachenko I.S., Raube S.S., Shikhanov S.V., Shikhanova E.G. Application of Electric Propulsion for Low Earth Orbit Station Keeping. Procedia Engineering, 2017, vol. 185, pp. 254–260, doi: 10.1016/j.proeng.2017.03.338
[11] GOST R 25645.166–2004. Atmosfera Zemli verkhnyaya. Model’ plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov [State Standard R 25645.166–2004. Zemli Earth upper atmosphere. Density model for ballistic support of flights of artificial earth satellites]. Moscow, Standartinform publ., 2004.
[12] Anshakov G.P., Salmin V.V., Volotsuyev V.V. Mathematical models for maintaining a low orbit of a spacecraft with the help of electrically reactive engines with allowance for power limitations. Informatsionnyye tekhnologii i nanotekhnologii. IV Mezhdunar. konf. i molodezhnaya shkola [Information technologies and nanotechnologies. IV international conference and youth school]. Samara, 2018, pp. 2813–2820.
[13] Salmin V.V., Starinova O.L., Volotsuyev V.V., Petrukhina K.V., Tkachenko I.S., Gogolev M.Yu., Chetverikov A.S., Materova I.L. Optimization of near-earth and interplanetary missions of spacecraft with electric propulsion systems. Trudy MAI, 2012, no. 60. Available at: https://mai.ru/upload/iblock/867/optimizatsiya-okolozemnykh-i-mezhplanetnykh-missiy-kosmicheskikh-apparatov-s-elektroreaktivnymi-dvigatelnymi-ustanovkami.pdf (accessed 5 February 2020).
[14] Salmin V.V., Vasil’yev V.V. Selection of universal parameters of a low-thrust engine designed to maintain the orbit of the Earth
[15] Lebedev V.N. Raschet dvizheniya kosmicheskogo apparata s maloy tyagoy [The calculation of the motion of a spacecraft with low thrust]. Moscow, AN SSSR publ., 1968. 108 p.