Retroreflector Complexes for Determining the Spacecraft Spatial Orientation Parameters
Authors: Akentyev A.S., Sokolov A.L. | Published: 02.11.2020 |
Published in issue: #11(728)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: satellite laser ranging, spatial orientation, retroreflector system, retroreflector complex |
This paper examines retroreflector complexes of spacecraft and proposes a method of determining spatial orientation of a spacecraft based on satellite laser ranging data. The minimum number of retroreflector systems in a retroreflector complex required to determine spatial orientation of a spacecraft is calculated. The error of results of calculating the direction of axes of the spacecraft coordinate system is obtained in the inertial reference system of the quantum-optical station. Recommendations are given on the application of the proposed method of determining spatial orientation of a spacecraft with a retroreflector complex.
References
[1] Roy Yu.A., Sadovnikov M.A., Shargorodskiy V.D. The laser ranging network is the basis for improving the GLONASS geodetic and ephemeris-time support. Vestnik GLONASS (spetsial’nyy vypusk), 2012, October, pp. 50–54 (in Russ.).
[2] Vasil’yev V.P., Shargorodskiy V.D. Precision Satellite Laser Ranging using high-repetition-rate lasers. Journal Electromagnetic Waves and Electronic Systems, 2007, no. 7, pp. 6–10 (in Russ.).
[3] Seeber G. Satellite Geodesy. Berlin, New York, Walter de Gruyte, 2003. 589 p.
[4] Sokolov A.L., Murashkin V.V., Akent’ev A.S., Karaseva E.A. Cube-corner reflectors with interference dielectric coating. Quantum Electronics, 2013, vol. 43, no. 9, pp. 795–799.
[5] Degnan J.J. Millimeter accuracy satellite laser ranging. Contributions of Space geodesy to Geodynamics: Technology, AGU Geodynamics Series, 1993, pp. 133–162, doi: 10.1029/GD025p0133
[6] Sokolov A.L., Akent’yev A.S., Nenadovich V.D. Space Retro reflector Arrays. Light & Engineering, 2017, vol. 19, no. 4, pp. 19–23 (in Russ.).
[7] Akent’yev A.S., Sokolov A.L., Zaytsev S.E. Metod opredeleniya prostranstvennoy oriyentatsii antenna-povorotnogo ustroystva kosmicheskogo apparata Kondor-E. Voyenno-kosmicheskoy akademii im. A.F. Mozhayskogo. Sbornik trudov, 2018, no. 664, pp. 116–126.
[8] Gushchev V.N. Osnovy ustroystva kosmicheskikh apparatov [The basics of spacecraft]. Moscow, Mashinostroyeniye publ., 2003. 272 p.
[9] Parkhomenko N.N., Shargorodsky V.D., Burmistrov V.B., Vasiliev V.P. Reflector, Larets and Meteor-3M. Proceeding of 14th International Workshop on laser Ranging, San Fernando, Spain 7–11 June, 2004.
[10] Akent’yev A.S., Sokolov A.L., Simonov G.V. Space experiment of satellite laser ranging of the SC “Lomonosov”. Information-measuring and Control Systems, 2018, vol. 16, no. 2, pp. 4–10 (in Russ.).
[11] Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Math reference book for scientists and engineers]. Moscow, Nauka publ., 1974. 832 p.
[12] Hobbs D., Bohm P. Precise Orbit Determination for Low Earth Orbit Satellites. Annals of the Marie Curie Fellowship Association, 2006, no. 4, p. 1–7.
[13] Qile Z., Jingnan L., Maorong G. High precision orbit determination of CHAMP satellite. Geo-spatial Information Science, 2006, vol. 9, no. 3, pp. 180–186.
[14] Dyatlov R.V., Bessonov S.A. Overview of stellar spacecraft orientation sensors. Sovremennyye problemy opredeleniya oriyentatsii i navigatsii kosmicheskikh apparatov. Sbornik trudov nauchno-tekhnicheskoy konferentsii [Modern problems of determining the orientation and navigation of spacecraft. Proceedings of the scientific and technical conference]. Moscow, Space Research Institute publ., 2009, pp. 11–31.
[15] Akent’yev A.S., Sokolov A.L., Sadovnikov M.A., Shargorodskiy V.D. Sposob opredeleniya trekhosnoy prostranstvennoy oriyentatsii kosmicheskogo apparata [Method for determining the triaxial spatial orientation of a spacecraft]. Patent RF no. 2696317, 2019, 3 p.