Analysis of Current State and Prospects for Development of Methods for Monitoring Tension of Radio-Reflecting Mesh on Deployable Frame of Large Mirror Antenna
Authors: Sayapin S.N. | Published: 26.01.2021 |
Published in issue: #2(731)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: deployable large mirror antenna, tension of radio-reflecting mesh, moire bands |
The article considers the problems of developing an operating automated method for monitoring the force and uniformity of tension of a radio-reflecting mesh on the deployable frame of large mirror antennas. Based on the performed analysis of known control methods they are classified as contact mechanical methods and non-contact optical ones. It is shown that only optical monitoring methods provide automated control of the tension force of the radio-reflecting mesh on the frame. Among the known optical methods for monitoring, only the moire band method allows creating an immediate picture of the uniformity of the tension of the radio-reflecting mesh over the entire surface under consideration. The method is based on the revealed relationship of moire patterns with the uniformity and tension force of the radio-reflecting mesh. The advantages of the described method are shown; the main advantage is the possibility of installing a radio-reflecting mesh on the deployable frame of the large mirror antenna in real time. Due to its versatility, the proposed method can be used in any other structures where the element being tested is a grid, regardless of the material from which it is made.
References
[1] Freeland R.E. Survey of deployable antenna concept. Large Space Antenna Systems Technology 1982. Proceedings of a conference held in Hampton, Virginia, 30 November–3 December 1982, NASA Conference Publication 2269, Hampton, 1983, pp. 381–422.
[2] Raketno-kosmicheskaya korporatsiya “Energiya” imeni S.P. Koroleva (1946–1996) [Korolev rocket and space Corporation Energia (1946-1996)]. Ed. Semenov Yu.P. Moscow, Energiya publ., 1996. 672 p.
[3] Sayapin S.N. Analiz i sintez raskryvayemykh na orbite pretsizionnykh krupnogabaritnykh mekhanizmov i konstruktsiy kosmicheskikh radioteleskopov lepestkovogo tipa. Dokt. Diss. [Analysis and synthesis of large-size precision mechanisms and structures of space radio telescopes of the petal type deployed in orbit. Doct. Diss.]. Moscow, 2003. 446 p.
[4] Love A.W. Some highlights in reflector antenna development. Radio Science, 1976, vol. 11, no. 8–9, pp. 671–684.
[5] Gryanik M.V., Loman V.I. Razvertyvayemyye zerkal’nyye antenny zontichnogo tipa [Umbrella-type deployable reflector antennas]. Moscow, Radio i svyaz’ publ., 1987. 72 p.
[6] Sputnik-retranslyator «Luch-15» [Luch-15 satellite repeater]. Available at: https://rustelecom-museum.ru/visit/plan/atrium-1 (accessed 17 August 2020).
[7] Kotovich O.S. Proyektirovaniye struktur, svoystv i tekhnologii metallicheskikh osnovovyazanykh setepoloten dlya gibkikh otrazhatel’nykh poverkhnostey antenn. Kand. Diss. [Design of structures, properties and technology of metal warp-knitted fabrics for flexible reflective antenna surfaces. Cand. Dis.]. Moscow, 2008. 166 p.
[8] Zavaruyev V.A., Belyayev O.F., Khalimanovich V.I. Using textile technologies to create a reflective surface of transformable space antennas. Pervyye mezhdunarodnyye Kosyginskiye chteniya. Sb. nauch. tr. mezhdunar. nauch.-tekhn. foruma [The first international Kosygin readings. Collection of scientific papers of the international scientific and technical forum]. Moscow, 2017, vol. 1, pp. 201–205.
[9] Zhang Y., Zhang H., Yang D. Form-Finding Design of Cable–Mesh Deployable Reflector Antennas Considering Wire Mesh Properties. AIAA Journal, 2019, vol. 57, no. 11, pp. 5027–5041, doi: 10.2514/1.J058213
[10] Terekhov V.Y., Zolotarenko I.D., Teminovskiy I.V. Development of Experimental Prototypes of Large Deployable Spacecraft Reflector Antenna Structures Applying New Radio-Technical Metal Mesh Materials. International Journal of Applied Engineering Research, 2017, vol. 12, no. 10, pp. 2422–2429.
[11] Belyayev O.F., Zavaruyev V.A., Kudryavin L.A., Podshivalov S.F., Khalimanovich V.I. Knitted metal fabrics for the reflective surface of transformable ground and space antennas. Technical Textile, 2007, no. 16, pp. 59?64 (in Russ.).
[12] Rao S., Shafai L., Sharma S. Handbook of Reflector Antennas and Feed Systems. Vol. III. Applications of Reflectors. Boston/London, Artech Hous, 2013. 462 p.
[13] Scialino G.L., Salvini P., Migliorelli M., Pennestri E., Valentini P.P., Klooster K., Prowald J.S., Rodrigues G., Gloy Y. Structural characterization and modeling of metallic mesh material for large deployable reflectors. Proceedings of the 2nd International Conference on Advanced Lightweight Structures and Reflector Antennas, Tbilisi, Georgia, 2014, pp. 182–192.
[14] Belyayev O.F., Zavaruyev V.A. Selection of microwire material for knitting the reflective surface of large-sized transformable antennas. Dizayn, tekhnologii i innovatsii v tekstil’noy promyshlennosti Sb. mater. mezhdunar. nauch.-tekhn. konf. [Design, technologies and innovations in the textile industry proceedings of the international scientific and technical conference]. Moscow, 2014, pt. 1, pp. 56–58.
[15] Ploeckl M., Lori M., Endler S., Pfeiffer E.K., Sinn T., Fluss T., Becker M., Ihle A. Reflective metallic mesh for large deployable reflector. Proceedings of the 3rd International Conference Advanced Lightweight Structures and Reflector Antennas, Tbilisi, Georgia, 2018, pp. 285–295.
[16] Kamegai K., Tsuboi M. Measurements of an Antenna Surface for a Millimeter-Wave Space Radio Telescope. II. Metal Mesh Surface for Large Deployable Reflector. Publications–Astronomical Society of Japan, 2013, vol. 65, no. 1, pp. 21.1–21.7, doi: 10.1093/pasj/65.1.21
[17] Pfeiffer E.K. Metal mesh on large reflector. Available at: https://www.esa.int/ESA_Multimedia/Images/2016/11/Metal_mesh_on_large_reflector (accessed 17 August 2020).
[18] Schlomski I. Textile in space. Available at: https://textile-network.com/en/Technical-Textiles/Textile-Flaechen/Textile-in-space (accessed 17 August 2020).
[19] MESH Made in Germany: Technical Textiles from Bavaria for the Worldmarket Space. Available at: http://www.hps-gmbh.com/en/news/hps-space-news (accessed 14 November 2020).
[20] Podshivalov S.F. “Textile” in the service of space. Informatsionnyye sputnikovyye sistemy, 2012, no. 13, pp. 18–19 (in Russ). Available at: https://www.iss-reshetnev.ru/media/journal/journal-13-2012.pdf (accessed 17 August 2020).
[21] Babkova E.S. Razrabotka tekhnologii izgotovleniya otrazhayushchikh poverkhnostey transformiruyemykh antenn iz metallotrikotazhnykh setepoloten s uvelichennymi razmerami yacheyek. Kand. Diss. [Development of technology for manufacturing reflective surfaces of transformable antennas made of metal-coated mesh panels with increased cell sizes. Cand. Diss.]. Moscow, 2020. 160 p.
[22] Sayapin S.N. Contactless online method for checking-up a net-shaped curtain’s tension of a radio-reflecting surface of large umbrella reflector antenna. Journal of Machinery Manufacture and Reliability, 2017, vol. 46, no. 6, pp. 519–526, doi: 10.3103/S1052618817060139
[23] Polukhin N.V., Bychkov V.I., Shitikov A.A., Romanenkov V.A., Polikarpov E.Yu., Ermakov N.I. Sposob izgotovleniya krupnogabaritnykh razvertyvayemykh reflektorov i ustroystvo dlya formirovaniya krivolineynoy poverkhnosti reflektora [A method for manufacturing large-sized deployable reflectors and a device for forming a curved surface of the reflector]. Patent RF no. 2276823, 2008.
[24] Polukhin N.V. Povysheniye proizvoditel’nosti i tochnosti deformatsionnogo regulirovaniya geometricheskikh parametrov kosmicheskikh antenn. Avtoref. Kand. Diss. [Improving the performance and accuracy of deformation control of geometric parameters of space antennas. Cand. Diss.]. Moscow, 2008. 16 p.
[25] Zhukov A.P., Pavlov M.S., Podshivalov S.F., Ponomarev S.V., Khalimanovich V.I. Indentation of an indenter into the surface of a stret·shed meshed linen. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 4(12), pp. 96–101 (in Russ.).
[26] Ponomarev S.V., Pavlov M.S., Podshivalov S.F., Zhukov A.P., Khalimanovich V.I. Sposob opredeleniya ravnomernogo natyazheniya membrany iz izotropnogo materiala [Method for determining the uniform tension of a membrane made of an isotropic material]. Patent RF no. 2497088 C2, 2013.
[27] Sukharev E.N., Kolovskiy Yu.V. The mesh tension control technique. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2006, no. 1, pp. 96–100 (in Russ.).
[28] Feodos’yev V.I. Soprotivleniye materialov [Strength of materials]. Moscow, Nauka publ., 1986. 512 p.
[29] Sukharev I.P., Ushakov B.N. Issledovaniye deformatsiy i napryazheniy metodom muarovykh polos [Investigation of deformations and stresses by the moire strip method]. Moscow, Mashinostroyeniye publ., 1969. 208 p.