High-Speed Micromilling of Composite and Aluminum Alloy Parts
Authors: Patraev E.V., Vakulin M.S., Gordeev Y.I., Yasinsky V.B. | Published: 23.11.2021 |
Published in issue: #12(741)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: micromilling, finite element method, surface roughness, geometry of the cutting part of the mill, composites, aluminum alloys |
The paper deals with the design of the cutting part of complex-profile cutters with high productivity and surface quality. Numerical experiments carried out using the finite element method made it possible to determine the stresses and strains in the layer of the cut material when machining with multifaceted milling cutters of a new type and indirectly estimate the specific cutting forces. The required dimensions and shape of the cutting wedge are set with account for various geometric parameters of the cutting part, properties of the workpiece material, and cutting conditions. This made it possible to obtain a three-dimensional model of an end mill with a trapezoidal tooth and 700 cutting edges. Experimental studies also showed a change in the morphology of chips with a size of about 2 microns, which is in good agreement with the results of preliminary estimates by the finite element method. The productivity of processing with milling cutters of a new design can be improved by increasing the number of single cutting cycles up to4000–6000 s–1.
References
[1] Hideaki O., Koji U., Ippei K., et al. High speed milling processes with long oblique cutting edges. J. Manuf. Process., 2015, vol. 19 pp. 95–101, doi: https://doi.org/10.1016/j.jmapro.2015.06.004
[2] Binchurov A.S., Indakov N.S., Gordeev Y.I., et al. Influence of cutting modes on power characteristics of rotational turning by multifaceted cutters. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 537, no. 3, art. 032101, doi: https://doi.org/10.1088/1757-899X/537/3/032101
[3] Brandao de Oliveira F., Rodrigues A.R., Coelho R.T., et al. Size effect and minimum chip thickness in micromilling. Int. J. Mach. Tools Manuf., 2015, vol. 89, pp. 39–54, doi: https://doi.org/10.1016/j.ijmachtools.2014.11.001
[4] Vorontsov A.L., Sultan-Zade N.M., Albagachiev A.Yu. Development of a new theory of cutting 5. Determining the kinematic, stress, and strain states of the blank. Vestnik Mashinostroeniya, 2008, no. 5, pp. 61–69. (In Russ.).
[5] Vogler M.P., Devor R.E., Kapoor S.G. On the modeling and analysis of machining performance in micro-end milling. J. Manuf. Sci. Eng., 2004, vol. 126, no. 4, pp. 685–694, doi: https://doi.org/10.1115/1.1813470
[6] Chuzhoy L., Devor R.E., Kapoor S.G., et al. Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng., 2002, vol. 124, no. 2, pp. 162–169, doi: https://doi.org/10.1115/1.1455642
[7] Cuba Ramos A., Autenrieth H., Straub T., et al. Characterization of the transition from ploughing to cutting in micro machining and evaluation of the minimum thickness of cut. J. Mater. Process. Technol., 2012, vol. 212, no. 3, pp. 594–600, doi: https://doi.org/10.1016/j.jmatprotec.2011.07.007
[8] Mohammad L., Saeid A., Mohsen A. 3D FEM simulation of tool wear in ultrasonic assisted rotary turning. Ultrasonics, 2018, vol. 88, pp. 106–114, doi: https://doi.org/10.1016/j.ultras.2018.03.013
[9] Vavilin V.A., Pasechnik K.A., Pushkarev A.Yu., et al. Features of mechanical processing of polymeric composite materials. Aktual’nye problemy aviatsii i kosmonavtiki, 2018, vol. 1, no. 14, pp. 12–14. (In Russ.).
[10] Abd Halim N.F.H., Ascroft H., Barnes S. Analysis of tool wear, cutting force, surface roughness and machining temperature during finishing operation of ultrasonic assisted milling (UAM) of carbon fibre reinforced plastic (CFRP). Procedia Eng., 2017, vol. 184, pp. 185–191, doi: https://doi.org/10.1016/j.proeng.2017.04.084
[11] Sturov A.A., Chashchin N.S. Machining composite material by a robotic complex based on KUKA KR210 robot. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2019, vol. 23, no. 4, pp. 743–750. (In Russ.).
[12] Minibaev M.I., Raskutin A.E., Goncharov V.A. Peculiarities of technology production specimens of pcm on cnc machines (review). Trudy VIAM [Proceedings of VIAM], 2019, no. 1, doi: https://doi.org/10.18577/2307-6046-2019-0-1-105-114 (in Russ.).
[13] Raskutin A.E., Khrul’kov A.V., Girsh R.I. Technological features of composite materials machining in manufacturing details of structures (review). Trudy VIAM [Proceedings of VIAM], 2016, no. 9, doi: https://doi.org/10.18577/2307-6046-2016-0-9-12-12 (in Russ.).
[14] Meshkas A.E., Makarov V.F., Shirinkin V.V. Technology improves the processing of composite materials by milling. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula state university. Technical sciences], 2016, no. 8–2, pp. 291–299. (In Russ.).
[15] Istotskiy V.V., Protas’yev V.B., Vinogradov A.E. Taking into consideration the rheological properties in machining of composite materials. Izvestiya TulGU. Tekhnicheskie nauki, 2017, no. 3, pp. 78–84. (In Russ.).
[16] Andryushchenko S.A., Rostovtsev P.A., Roshchupkin S.I. [Experimental study of the influence of machining strategies on surface roughness during milling of aluminum alloys by end mills]. Sovremennye tekhnologii: problemy i perspektivy [Modern Technologies: Issues and Prospects]. Sevastopol’, SGU Publ., 2019, pp. 11–15. (In Russ.).
[17] Trusov V.N., Zakonov O.I., Shikin V.V. Research on milling parameters for the D16T aluminium alloy. Vestnik SamGTU. Ser. Tekhnicheskie nauki [Vestnik of Samara State Technical University. Technical Sciences Series], 2012, no. 3, pp. 155–162. (In Russ.).
[18] Kulikov M.Yu., Inozemtsev V.E., Bocharov A.A. Investigation of the process of formation when combined milling and electrochemical machining of aluminum. Metalloobrabotka, 2015, no. 6, pp. 50–53. (In Russ.).
[19] Demin A.S., Lavrent’yev S.V. [Cutting regime with DLC coating at processing of aluminium alloys]. Problemy, perspektivy i napravleniya innovatsionnogo razvitiya nauki. Sb. st. Mezhd. nauch.-prakt. konf. Ch. 3 [Problems, Prospects and Direction of Science Innovative Growth. Proc. Int. Sci.-Tech. Conf. P. 3]. Sterlitamak, AMI Publ., 2017, pp. 116–118. (In Russ.).
[20] Kovalevskiy A.V. Setting rational milling modes for processing of aluminum alloys. Omskiy nauchnyy vestnik [Omsk Scientific Bulletin], 2008, no. 4(73), pp. 64–66. (In Russ.).
[21] Gordeev Y.I., Yasinskiy V.B., Anistratenko N.E., et al. Study of the formation features of hard metal composites structure obtained from bimodal powder mixtures. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 511, art. 012032, doi: https://doi.org/10.1088/1757-899X/511/1/012032