Analysis of the Operation of an Arched Elastomeric Shock Absorber Under Two-Axial Loading
Authors: Sinilschikov V.B., Melikhov K.V., Kunavich S.A. | Published: 30.11.2021 |
Published in issue: #12(741)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: arched elastomeric shock absorber, force characteristic, hyperelastic material, finite element modeling, operating element |
Elastomeric shock absorbers are used in various technical fields to protect equipment from impacts. Elastomers made in an arched shape have complex nonlinear force characteristics due to large deformations, loss of stability of working elements and closing of surfaces. In this regard, obtaining the power characteristics of arched elastomeric shock absorbers is a complex computational problem. It is noteworthy that, in the literature, these characteristics are given only for the case of normal compression. However, when assessing the possibility of using a shock-absorbing system based on arched elastomeric shock absorbers, it is necessary to take into account their lateral force. The study proposes to solve the problem of determining the elastic force characteristics of a shock absorber while operating in the normal and lateral directions in the system of finite element analysis in a flat formulation. Analytical expressions are obtained for the normal and transverse static reactions of the shock absorber under simultaneous loading in the normal and transverse directions. Analytic expressions can be used to simulate complex shock-absorbing systems with a large number of such shock absorbers.
References
[1] Alifanov E.V., Chaykun A.M., Naumov I.S., et al. Elastomeric materials with high heat resistance (review). Trudy VIAM [Proceedings of VIAM], 2017, no. 2, doi: https://doi.org/10.18577/2307-6046-2017-0-2-6-6 (in Russ.).
[2] Grakov S.A., Bokhan V.V. Polyurethane-metal mountings as an option of vibration insulation of heavy equipment. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2018, vol. 6, no. 1, pp. 45–49, doi: https://doi.org/10.25206/2310-9793-2018-6-1-45-49 (in Russ.).
[3] Popa A. Assessment of performance for elastomeric bearings used on bridges and viaducts. Acta Uiversitatis Cibiniensis. Technical series, 2017, vol. 60, pp. 40–46, doi: https://doi.org/10.1515/aucts-2017-0006
[4] Kalfas K., Mitoulis S., Konstantinidis D. Influence of steel reinforcement on the performance of elastomeric bearings. J. Struct. Eng., 2020, vol. 146, no. 10, art. 04020195, doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002710
[5] Belkin A.E., Dashtiev I.Z., Kostromitskikh A.V. Determining polyurethane elastic parameters at large strains using torsion and tensile test results. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2016, no. 8, pp. 3–10, doi: https://doi.org/10.18698/0536-1044-2016-8-3-10 (in Russ.).
[6] Shuvalov A., Safina L., Kovalev M. Comparative tests for horizontal stiffness of elastomeric bearings. MATEC Web Conf., 2018, vol. 251, art. 02043, doi: https://doi.org/10.1051/matecconf/201825102043
[7] Guzman M., Forcellini D., Moreno R., et al. Theoretical, numerical and experimental assessment of elastomeric bearing stability. Int. J. Architect. Environ. Eng., 2018, vol. 12, no. 11, pp. 1083–1088.
[8] Kruglov Yu.A., Khramov B.A., Kabanov E.N. Sistemy udarovibrozashchity raket, apparatury i oborudovaniya [Systems for vibration and shock protection of the rockets, apparatus and equipment]. Sankt-Petersburg, BGTU Publ., 2010. 70 p. (In Russ.).
[9] Zhidkov A.V., Leont’yev N.V. Modelirovanie povedeniya giperuprugikh materialov. Ch. 2. Primenenie ANSYS [Modelling of hyperelastic materials behaviour. P. 2. Application of ANSYS]. Nizhniy Novgorod, Nizhegorodskiy gosuniversitet Publ., 2020. 32 p. (In Russ.).
[10] Ogden R.W. Non-linear elastic deformations. Chichester, Halsted Press, 1984.
[11] Rezende R., Greco M., Lalo D. Numerical analysis of an elastomeric bearing pad by hyperelastic models. Revista de la Construcci?n. J. Constr., 2020, vol. 19, no. 3, pp. 301–310, doi: https://doi.org/10.7764/RDLC.19.3.301
[12] ANSYS. Mechanical APDL Documentation. Release 18.1.
[13] Shmurak M.I., Kuchumov A.G., Voronova N.O. Hyperelastic models analysis for description of soft human tissues behavior. Master`s Journal, 2017, no. 1, pp. 230–243. (In Russ.).
[14] Zhidkov A.V., Leont’yev N.V. Modelirovanie povedeniya giperuprugikh materialov [Modelling of hyperelastic materials behaviour]. Nizhniy Novgorod, Nizhegorodskiy gosuniversitet Publ., 2019. 55 p. (In Russ.).
[15] Pal’mov V.A. Opredelyayushchie uravneniya termouprugikh, termovyazkikh i termoplasticheskikh materialov [Defining equations for thermoelastic, thermoviscous and thermoplastic materials]. Sankt-Petersburg, Izd-vo politekhn. un-ta Publ., 2008. 138 p. (In Russ.).
[16] Jemiolo S., Franus A. A slightly compressible hyperelastic material model with the Mullins effect. IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1015, art. 012004. doi: https://doi.org/10.1088/1757-899X/1015/1/012004