Planet’s Real Motion Taken into Consideration in Analysis of an Interplanetary Trajectory Using Resonant with the Planet’s Orbit Segments
Authors: Konstantinov M.S., Kurasbediani R.G. | Published: 22.01.2022 |
Published in issue: #2(743)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: interplanetary trajectory, sequence of gravity assist maneuvers, resonant orbit, pulse correction |
The paper examines a complex scheme of interplanetary flight with a sequence of near-planet gravity assist maneuvers and resonant with its orbit heliocentric sections of the spacecraft trajectory. The trajectory between gravity assist maneuvers does not imply the propulsion system, but it does have its pulse correction. The study estimates how much relative velocity is spent on the correction when spacecraft is moving in a resonant orbit; comparatively analyzes the characteristics of the flight orbits obtained by taking into consideration the planet’s real motion and assuming the stability of its trajectory. The study reveals that for an interplanetary trajectory with four resonant orbits, which are heliocentric with the planet’s orbit, the total amount of the correcting pulse is less than 11 m / s. In this case, the trajectory characteristics, including the elements of heliocentric trajectories and the parameters of gravity assist maneuvers, change insignificantly. Findings of the research show that the considered schemes of interplanetary trajectories can be designed if the planet’s orbit stability is assumed.
References
[1] Guo Y., Thompson P., Wirzburger J. et al. Execution of Parker Solar Probe’s unprecedented flight to the Sun and early results. Acta Astronaut., 2021, vol. 179, pp. 425–438, doi: https://doi.org/10.1016/j.actaastro.2020.11.007
[2] Perez J.M.S., Varga G.I. Solar orbiter: consolidated report on mission analysis. Tech. Rep. SOL-ESC-RP-05500 3.1 (12/5-2010), 2012.
[3] Solar orbiter. Assessment phase. Final executive report. ESA, SCI-A/2005/054/NR, 2005. 30 p.
[4] Mangano V., Dosa M., Franz M. et.al. BepiColombo science investigations during cruise and flybys at the Earth, Venus and Mercury. Space Sci. Rev., 2021, vol. 217, no. 1, art. 23, doi: https://doi.org/10.1007/s11214-021-00797-9
[5] Kuznetsov V. The Russian InterhelioProbe mission. 4th Solar Orbiter Workshop, Telluride, Colorado, 2011. 20 p.
[6] Kuznetsov V., ed. INTERHELIOPROBE project. Workshop Proc. Tarusa, 2011. 192 p.
[7] Ovchinnikov M.Yu., Trofimov S.P., Shirobokov M.G. Design of interplanetary transfers with unpowered gravity assists using the Method of Virtual Trajectories. Preprinty IPM im. M.V. Keldysha [Keldysh Institute Preprints], 2013, no. 22. 26 p. (In Russ.).
[8] Shirobokov M.G., Trofimov S.P. Proektirovanie mezhplanetnykh pereletov s neskol’kimi gravitatsionnymi manevrami i promezhutochnymi impul’sami [Interplanetary transfer design with some gravitational slingshots and midcourse burn]. Moscow, RAS Publ., 2017. 35 p. (In Russ.).
[9] Leb Kh.V., Petukhov V.G., Popov G.A. Heliocentric trajectories of solar orbiter with ion propulsion. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/published.php?ID=24275 (in Russ.).
[10] Konstantinov M.S., Min T. The analysis of one spacecraft flight profile for Sun exploration. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/published.php?ID=46802&eng=N (in Russ.).
[11] Konstantinov M.S., Min T. Optimization of spacecraft trajectory onto the heliocentric orbit. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/published.php?ID=41510&eng=N (in Russ.).
[12] Konstantinov M.S., Petukhov V.G., Teyn M. Optimizatsiya traektoriy geliotsentricheskikh pereletov [Trajectory optimization of heliocentric flights]. Moscow, Izd-vo MAI Publ., 2015. 260 p. (In Russ.).
[13] Konstantinov M.S. Comparative design and ballistic analysis of using chemical and electric propulsion systems in the solar probe project. Kosmicheskie issledovaniya, 2019, vol. 57, no. 5, pp. 347–360, doi: https://doi.org/10.1134/S0023420619050042 (in Russ.). (Eng. version: Cosmic Res., 2019, vol. 57, no. 5, pp. 325–338, doi: https://doi.org/10.1134/S0010952519050046)
[14] Lancaster E.R., Blanchard R.C. A unified form of Lambert’s theorem. NASA technical note. TN D-5368. 1969. 20 p.
[15] Gooding R.H. A procedure for the solution of Lambert’s orbital boundary-value problem. Celestial Mech. Dyn. Astr., 1990, vol. 48, no. 2, pp. 145–165, doi: https://doi.org/10.1007/BF00049511
[16] Standish E.M. JPL planetary and lunar ephemerides. DE405/LE405. JPL IOM 312.F-98-048, 1998. 5 p.