Deviations from the Fourier Hypothesis, Detected during the Low Frequency Modal Analysis of the Box-Shell
Authors: Arinchev S.V. | Published: 11.05.2022 |
Published in issue: #6(747)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: separation of variables, Fourier hypothesis, frequency shift |
The article presents the results of box-shaped shell tests in the frequency range of 10…50 Hz. According to the Fourier hypothesis, the peaks of the amplitude-frequency characteristics corresponding to different points of the box-like shell are to lie on the same vertical straight line. An analysis of the results of frequency tests revealed significant deviations from the Fourier hypothesis. It is shown that in resonance (of the same tone) different points of the box shell oscillate with different frequencies. Frequency shifts are about 2 Hz.
References
[1] Mains M., Dilworth B.J. Topics in modal analysis & testing. Vol. 9. Springer, 2018. 384 p.
[2] Harvie J.M., Baqersad J. Shock & vibration, aircraft/aerospace, energy harvesting, acoustic & optics. Vol. 9. Springer, 2017. 330 p.
[3] Boeswald M., Goge D., Fullekrug U. et al. A review of experimental modal analysis methods with respect to their applicability to test data of large aircraft structures. Proc. ISMA, 2006, pp. 2461–2482.
[4] Donaldson I.A. Experimental modal analysis of business jet fuselage tail section sub-assemblies. Thes. deg. mast. appl. sci. Queen’s University, 2020. 141 p.
[5] Kannan S., Ramamoorthy M. Mechanical characterization and experimental modal analysis of 3D-printed ABS, PC and PC-ABS materials. Mater. Res. Express, 2020, vol. 7, no. 1, art. 015341, doi: https://doi.org/10.1088/2053-1591/ab6a48
[6] Karaagacli T., Ozguven H.N. Experimental modal analysis of nonlinear systems by using response-controlled stepped sine testing. Mech. Syst. Signal Process., 2021, vol. 146, art. 107023, doi; https://doi.org/10.1016/j.ymssp.2020.107023
[7] Lee J., Kim D.H. Experimental modal analysis and vibration monitoring of the cutting-tool support structure. Int. J. Mech. Sci., 1995, vol. 37, no. 11, pp. 1133–1146, doi: https://doi.org/10.1016/0020-7403(95)00029-W
[8] Nikhamkin M., Semenov S., Silberschmidt V.V. et al. Identification of elastic parameters of laminated carbon fiber plates using experimental modal analysis. ARPN J. Eng. Appl. Sci., 2019, vol. 14, no. 12, pp. 2279–2285.
[9] Ozdoganlar O.B., Hansche B.D., Carne T.G. Experimental modal analysis for Microsystems. Proc. IMAC-XXI Conf. & Exposition on Structural Dynamic, 2003. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.5562&rep=rep1&type=pdf (accessed: 15.12.2021).
[10] Ozdoganlar O.B., Hansche B.D., Carne T.G. Experimental modal analysis for microelectromechanical systems. Exp. Mech., 2005, vol. 45, no. 6, pp. 498–506, doi: https://doi.org/10.1007/BF02427903
[11] Pappalardo C.M., Guida D. System identification and experimental modal analysis of a frame structure. Eng. Lett., 2018, vol. 26, no. 1, pp. 56–68.
[12] Ramsey K.A. Experimental modal analysis, structural modifications and fem analysis on a desktop computer. Sound Vib., 1983, vol. 17, no. 2, pp. 19–27.
[13] Bart P., De Roeck G. Stochastic system identification for operational modal analysis: a review. J. Dyn. Sys., Meas., Control., 2001, vol. 123, no. 4, pp. 659–657, doi: https://doi.org/10.1115/1.1410370
[14] Soize C., Capiez-Lernout E., Ohayon R. Robust updating of uncertain computational models using experimental modal analysis. AAIA J., 2008, vol. 46, no. 11, pp. 2955–2965, doi: https://doi.org/10.2514/1.38115
[15] Tarpo M., Vigso M., Brincker R. Modal truncation in experimental modal analysis. In: Topics in modal analysis and testing. Vol. 9. Springer, 2018, pp. 143–152.
[16] Wong T.L., Stevens K.K., Wang G. Experimental modal analysis and dynamic response prediction on PC boards with surface-mount electronic components. J. Electron. Packag. S, 1991, vol. 113, no. 3, pp. 244–249, doi: https://doi.org/10.1115/1.2905402
[17] Heylen W., Lammens S., Sas P. Modal analysis theory and testing. Katholieke Universiteit Leuven, 1998. 170 p. (Russ. ed.: Modal’nyy analiz. Teoriya i ispytaniya. Moscow, Novatest Publ., 2010. 319 p.)
[18] dataphysics.com: website of DataPhysics corporation. URL: https://www.dataphysics.com/ (accessed: 15.12.2021).
[19] blms.ru: website of BLM Sinerzhi. URL: https://blms.ru/ (accessed: 15.12.2021). (In Russ.).
[20] Arinchev S.V. Newton’s third law is not a dogma but a computational hypothesis. Izvestiya Vysshikh Uchebnykh Zavedeniy, Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 6, pp. 36–50. doi: http://dx.doi.org/10.18698/0536-1044-2020-6-36-50 (in Russ.).