Optimal Costs for Combined Deorbiting Outsized Orbital Debris Using an Electric Propulsion Engine
Authors: Golubek A.V. | Published: 29.06.2022 |
Published in issue: #7(748)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: combined deorbiting, electric propulsion engine, energy costs |
The article proposes the development of a method for the combined deorbiting large space debris objects from low Earth orbits, performed using an electric propulsion engine and an aerodynamic sailing device. Simulation modeling of the combined deorbiting was carried out for various combinations of parameters of deorbit scheme, such as the altitude of the initial orbit, the phase of solar activity at the moment of deorbiting start, the ballistic coefficient, the time of active operation of the control system, and the time of one battery charge. Analytical dependences of the minimum increment in the velocity of an electric propulsion system, gained in one impulse, and the minimum number of impulses on the parameters of the deorbiting scheme, necessary to ensure the withdrawal for 25 years, are determined. Sectors of the solar activity phase at the moment of the deorbiting start providing optimal energy costs for the withdrawal process, are identified. The results obtained are of practical interest for the problems of designing modern means of deorbiting large space objects from low Earth orbits at enterprises in the rocket and space industry.
References
[1] Golubek A., Dron’ M., Dubovik L. et al. Development of the combined method to de-orbit space objects using an electric rocket propulsion system. EasternEuropean J. Enterp. Technol., 2020, vol. 4, no. 5, pp. 78–87, doi: https://doi.org/10.15587/1729-4061.2020.210378
[2] Pikalov R.S., Yudintsev V.V. Bulky space debris removal means review and selection. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/published.php?ID=93299 (in Russ.).
[3] Mark C.P., Kamath S. Review of active space debris removal methods. Space Policy, 2019, vol. 47, pp. 194–206, doi: https://doi.org/10.1016/j.spacepol.2018.12.005
[4] Guerra G., Muresan A.C., Nordqvist K.G. et al. Active space debris removal system. INCAS Bull., 2017, vol. 9, no. 2, pp. 97–116.
[5] Li J., Hu M., Wang X. et al. Optimal control method for low thrust deorbit of the low earth orbit satellite based on ALPSO algorithm. Systems Eng. Electron., 2021, vol. 43, no. 1, pp. 199–207.
[6] Kolovskiy I.K., Podolyakin V.N., Shmakov D.N. Evaluation of capability to perform deorbiting maneuver to take spacecraft Gonets-M from operating orbit. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2018, no. 2, pp. 107–113. (In Russ.).
[7] Alpatov A.P., Palii O.S., Skorik O.D. The development of structural design and the selection of design parameters of aerodynamic systems for de-orbiting upper-stage rocket launcher. Sci. Innov., 2017, vol. 13, no. 4, pp. 29–39, doi: http://dx.doi.org/10.15407/scine13.04.029
[8] Pichkhadze K.M., Sysoev V.K., Firsyuk S.O. et al. Analysis of the design of the drag braking device for CubeSat satellites for withdrawal from low near-Earth orbits. Inzhenernyy zhurnal: Nauka i innovatsii [Engineering Journal: Science and Innovation], 2020, no. 5, doi: https://doi.org/10.18698/2308-6033-2020-5-1982 (in Russ.).
[9] Karchaev Kh.Zh., Pichkhadze K.M., Sysoev V.K. et al. Analyses of methods remove nanospacecraft CubeSat in low earth orbit. Polet [Flight], 2019, no. 4, pp. 19–28. (In Russ.).
[10] Nikolajsen J.A., Kristensen A.S. Self-deployable drag sail folded nine times. Adv. Space Res., 2021, vol. 68, no. 10, pp. 4242–4251, doi: https://doi.org/10.1016/j.asr.2021.08.005
[11] Kelly P., Bevilacqua R., Mazal L. et al. TugSat: removing space debris from geostationary orbits using solar sails. J. Spacecr. Rockets., 2018, vol. 55, no. 2, pp. 437–450, doi: https://doi.org/10.2514/1.A33872
[12] Lucking C., Colombo C., McInnes C.R. A passive satellite deorbiting strategy for medium Earth orbit using solar radiation pressure and the J2 effect. Acta Astronaut., 2012, vol. 77, pp. 197–206, doi: https://doi.org/10.1016/j.actaastro.2012.03.026
[13] Onishchuk S.Yu. [Application of Lorenz force for withdrawal of large space debris objects]. Problemy razrabotki, izgotovleniya i ekspluatatsii raketno-kosmicheskoy tekhniki i podgotovki inzhenernykh kadrov dlya aviakosmicheskoy otrasli. Mat. XIII Vseros. nauch.-tekh. konf. [Problems of Development, Production and Exploitation of Rocket-Space Technics and Training Engineering Staff for Aerospace Branch. Proc. XIII Russ. Sci.-Tech. Conf.]. Omsk, OmGTU Publ., 2019, pp. 25–31. (In Russ.).
[14] Shuvalov V.A., Gorev N.B., Tokmak N.A. et al. Drag on a spacecraft produced by the interaction of its magnetic field with the Earth’s ionosphere. Physical modelling. Acta Astronaut., 2020, vol. 166, pp. 41–51, doi: https://doi.org/10.1016/j.actaastro.2019.10.018
[15] Li G., Zhu Z.H., Ruel S. et al. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astronaut., 2017, vol. 137, pp. 320–333, doi: https://doi.org/10.1016/j.actaastro.2017.04.025
[16] Sarego G., Olivieri L., Valmorbida A. et al. Deployment requirements for deorbiting electrodynamic tether technology. CEAS Space J., 2021, vol. 13, no. 4, pp. 567–581, doi: https://doi.org/10.1007/s12567-021-00349-5
[17] Alpatov A., Khoroshylov S., Bombardelli C. Relative control of an ion beam shepherd satellite using the impulse compensation thruster. Acta Astronaut., 2018, vol. 151, pp. 543–554, doi: https://doi.org/10.1016/j.actaastro.2018.06.056
[18] Aslanov V., Ledkov A.S., Konstantinov M.S. Attitude motion of a space object during its contactless ion beam transportation. Acta Astronaut., 2020, vol. 179, pp. 359–370, doi: https://doi.org/10.1016/j.actaastro.2020.11.017
[19] Ryazanov V.V., Ledkov A.S. Descent of nanosatellite from low Earth orbit by ion beam. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika [Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics], 2019, no. 1, pp. 82–93, doi: https://doi.org/10.18500/1816-9791-2019-19-1-82-93 (in Russ.).
[20] Aslanov V., Schaub H. Detumbling Attitude control analysis considering an electrostatic pusher configuration. J. Guid. Control Dyn., 2019, vol. 42, no. 3, pp. 900–910, doi: https://doi.org/10.2514/1.G003966
[21] Scharring S., Wilken J., Eckel H.A. Laser-based removal of irregularly shaped space debris. Opt. Eng., 2016, vol. 56, no. 1, art. 011007, doi: https://doi.org/10.1117/1.OE.56.1.011007
[22] Kuznetsov I.I., Mukhin I.B., Snetkov I.L. et al. [Schemes of orbital lasers for removing space debris]. Vseros. nauch. konf. s mezhd. uch. Kosmicheskiy musor: fundamental’nye i prakticheskie aspekty ugrozy [Russ. Sci. Conf. with Int. Anticipation. Space Debris: Fundamental and Practical Aspects of the Threat]. Moscow, IKI RAN Publ., 2019, pp. 199–206, doi: https://doi.org/10.21046/spacedebris2019-199-206 (in Russ.).
[23] Dron’ M., Golubek A., Dubovik L. et al. Analysis of ballistic aspects in the combined method for removing space objects from the near-Earth orbits. EasternEuropean J. Enterp. Technol., 2019, vol. 2, no. 5, pp. 49–54, doi: 10. https://doi.org/10.15587/1729-4061.2019.161778
[24] Dron’ N.M., Golubek A.V., Dreus A.Yu. et al. Prospects for the use of the combined method for deorbiting of large-scale space debris from near-Earth space. Kosmіchna nauka і tekhnologіya [Space Science and Technology], 2019, t. 25, no. 6, pp. 61–69, doi: https://doi.org/10.15407/knit2019.06.061 (in Russ.).
[25] Lapkhanov E., Khoroshylov S. Development of the aeromagnetic space debris deorbiting system. EasternEuropean J. Enterp. Technol., 2019, vol. 5, no. 5, pp. 30–37, doi: https://doi.org/10.15587/1729-4061.2019.179382