Numerical Analysis of Corrugation Development during Oblique Compression of a Plate When Manufacturing Angle Metal Parts
Authors: Boyarskiy D.S., Tarasov V.A., Baburin M.A., Baskakov V.D., Boyarskaya R.V. | Published: 27.08.2022 |
Published in issue: #9(750)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: oblique compression, stability loss, corrugation magnitude, developing corrugation |
The paper considers the problem of corrugation developing on walls of parts during sheet metal forming. We performed a numerical experiment using Deform-3D software to simulate manufacturing operations pertaining to forming a workpiece in the cramped conditions of the die. We established probabilities and conditions for corrugations developing on the shelves of angle metal parts representing a wide range of aircraft components, such as stringers, stiffeners and structural elements of lattice rudders and wings.
References
[1] Romanovskiy V.P. Spravochnik po kholodnoy shtampovke [Handbook on cold forging]. Leningrad, Mashinostroenie Publ., 1979. 522 p. (In Russ.).
[2] Popov E.A. Osnovy teorii listovoy shtampovki [Fundamentals of sheet forming theory]. Moscow, Mashinostroenie Publ., 1968. 283 p. (In Russ.).
[3] Ershov V.I., Popov O.V., Chumadin A.S. et al. Listovaya shtampovka [Sheet forming]. Moscow, Izd-vo MAI Publ., 1999. 516 p. (In Russ.).
[4] Chumadin A.S. Teoriya i raschety protsessov listovoy shtampovki [Theory and calculation of sheet forming processes]. Moscow, Eksposervis VIP Publ., 2014. 216 p. (In Russ.).
[5] Tarasov V.A., Baskakov V.D., Baburin M.A. et al. Estimation of the error of bending of angle blanks in a tool die. Tekhnologiya metallov, 2019, no. 3, pp. 7–13. (In Russ.). (Eng. version: Russ. Metall., 2019, vol. 2019, no. 13, pp. 1460–1465, doi: https://doi.org/10.1134/S0036029519130378)
[6] Wanintradul C., Golovashchenko S.F., Gillard A.J. et al. Hemming process with counteraction force to prevent creepage. J. Manuf. Proces., 2014, vol. 16, no. 3, pp. 379–390, doi: https://doi.org/10.1016/j.jmapro.2014.04.003
[7] Tarasov V.A., Baskakov V.D., Baburin M.A. et al. Wall thinning at the vertex of an angle piece for bending in a tool die. Tekhnologiya metallov, 2021, no. 4, pp. 22–27. (In Russ.). (Eng. version: Russ. Metall., 2021, vol. 2021, no. 13, 1738–1742. https://doi.org/10.1134/S0036029521130310)
[8] Baburin M.A., Baskaskov V.D., Boyarskiy D.S. [Method for an approximate evaluation of thinning details of a corner form during bending in the tool stamp]. XLIV Akademicheskie chteniya po kosmonavtike. T. 2 [XLIV Academic Space Conference. Vol. 2]. Moscow, Bauman MSTU Publ., 2020, pp. 399–401. (In Russ.).
[9] Mantusov M.N. Stamping of curved flanges of sheet parts with elastomer with the imposition of tangential compression. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem [Forging and Stamping Production. Processing of Materials by Pressure], 2021, no. 4, pp. 17–22. (In Russ.).
[10] Chechulin Yu.B., ed. Prakticheskoe rukovodstvo k programmnomu kompleksu DEFORM-3D [Practice guidelines for DEFORM-3D software]. Ekaterinburg, UrFu Publ., 2010. 266 p. (In Russ.).
[11] Savelev L.M. Material deformation curve approximation in strength and stability analysis. Russ. Aeronaut., 2011, vol. 54, no. 3, pp. 292–297, doi: https://doi.org/10.3103/S1068799811030093
[12] Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations. Int. J. Plast., 2007, vol. 23, no. 3, pp. 385–419, doi: https://doi.org/10.1016/j.ijplas.2006.06.003
[13] Dmitriev A.M., Vorontsov A.L. Approximation of metal hardening curves. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem [Forging and Stamping Production. Processing of Materials by Pressure], 2002, no. 6, pp. 16–22. (In Russ.).
[14] Vorontsov A.L. On approximation of hardening curves. Vestnik mashinostroeniya, 2002, no. 1, pp. 51–54.
[15] Tarasov V.A., Baskakov V.D., Baburin M.A. et al. Approximation of steel deformation curve by their mechanical characteristics. Chernye metally, 2020, no. 8, pp. 59–63. (In Russ.).
[16] Baburin M.A., Vodyanskiy M.L., Grachev A.V. Sposob izgotovleniya profiley preimushchestvenno W-obraznogo secheniya [Method for forming, mainly shapes with w-like cross section]. Patent 2267373. Appl. 05.03.2004, publ. 10.01.2006. (In Russ.).
[17] Feodos’yev V.I. Soprotivlenie materialov [Strength of materials]. Moscow, Nauka Publ., 1979. 559 p. (In Russ.).
[18] Rabotnov Yu.N. Soprotivlenie materialov [Strength of materials]. Moscow, Fizmatgiz Publ., 1962. 455 p. (In Russ.).