Evaluation of the possibility to use composite material in the structure of the rocket stage cryogenic conical tank
Authors: Ustinova A.P., Siuskina Yu.L., Peshkov R.A. | Published: 10.03.2023 |
Published in issue: #3(756)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: cryogenic conical tank, composite materials, geodesic winding |
Reducing mass of the launch vehicle components structure to increase the payload mass launched into orbit is one of the main areas in developing the space services market. Modern designs of the launch vehicles require extremely high fuel mass fraction, which necessitates introduction of the low-density materials. Fuel tanks could count for 70...80% of the total product volume, which results in the development of tanks for the cryogenic fuel obtaining decisive importance in design and development of the new type of launch vehicles. Introduction of the composite materials in designing a cryogenic fuel tank makes it possible to lower its mass by 30% compared to a reference aluminum tank, which, accordingly, allows increasing the inserted payload mass. Review of the methods used in manufacturing the cryogenic composite fuel tanks is presented. Liner manufacturing technology and its material are proposed, taking into account the temperature difference during shaping and its interaction with the cryogenic fuel. Composite material and method for manufacturing the composite tank are selected. Design calculation of the composite cryogenic tank was carried out.
References
[1] Perez E. Soyuz. User’s manual. Iss. 2. Arianespace, 2012. 244 p.
[2] Timofeev E.V., Vaulin S.D., eds. [Using composites in design of tank walls for reusable launch vehicle]. Asteroidnaya bezopasnost. Mat. III stud. nauch.-tekh. konf. [Asteroid Safety. Proc. III Student Sci.-Tech. Conf.]. Chelyabinsk, YuUrGU, 2021, pp. 56–62. (In Russ.).
[3] Mikhaylov M.Yu., Spiridonov V.V., Mishcheryakov S.V. Control system of temperatures in fuel tank for oxidizer of space rocket "Soyuz-2". Patent RU 2651554. Appl. 03.03.2016, publ. 20.04.2018. (In Russ.).
[4] Johnson T.F., Sleight D.W., Martin R.A. Structures and design phase I summary for the NASA composite cryotank technology demonstration project. Hampton, NASA Langley Research Center, 2013. 11 p. (In Russ.).
[5] Isikava Ya., Mori Kh. Nizkotemperaturnyy rezervuar i sposob ego izgotovleniya [Low-temperature reservoir and method of its production]. Patent RU 2717931. Appl. 25.10.2017, publ. 26.03.2020. (In Russ.).
[6] Kotlyar I.K. Sosudy, rabotayushchie pod davleniem, i sposoby ikh izgotovleniya s ispolzovaniem additivnoy tekhnologii [Pressure vessels and methods of manufacturing thereof with use of additive technology]. Patent RU 2665089. Appl. 17.03.2015, publ. 20.04.2018. (In Russ.).
[7] Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Winding technology for composite rocket constructions and killing agent]. Moscow, Bauman MSTU Publ., 2015. 431 p. (In Russ.).
[8] Ayusheev T.V. Geometricheskie voprosy adaptivnoy tekhnologii izgotovleniya konstruktsiy namotkoy iz voloknistykh kompozitsionnykh materialov [Geometric problems of adaptive winding technology for production of constructions from fiber composites]. Ulan-Ude, Izd-vo BNTs SO RAN Publ., 2005. 212 p. (In Russ.).
[9] Aerokosmicheskaya otrasl [Aerospace industry]. umatex.com: website. URL: https://umatex.com/applications/space/ (accessed: 15.09.2022). (In Russ.).
[10] Entsiklopediya polimerov. T. 1–3 [Encyclopedia of polymers. Vol. 1-3]. Moscow, Sovetskaya entsiklopediya Publ., 1972, 1974, 1977; 1224 p., 1032 p., 1152 p. (In Russ.).
[11] Gusev Yu.A., Borshchev A.V., Khrulkov A.V. Features of prepregs intended for automated laying by ATL and AFP technologies. Trudy VIAM [Proceedings of VIAM], 2015, no. 3, doi: https://dx.doi.org/10.18577/2307-6046-2015-0-3-6-6 (in Russ.).
[12] Krysin V.N., Krysin M.V. Tekhnologicheskie protsessy formovaniya, namotki i skleivaniya konstruktsiy [Technological processes of formation, winding and gluing of structures]. Moscow, Mashinostroenie Publ., 1989. 240 p. (In Russ.).
[13] Lavrov N.A., Igumenov M.S. Pressure vessel of a polymeric composite materials. Plasticheskie massy, 2018, no. 5–6, pp. 45–47. (In Russ.).
[14] Splav 36N — invar [36N alloy – invar]. poliasmet.ru: website. URL: https://poliasmet.ru/pretsizionnye-splavy-svojstva/invar-36n-feni36.html (accessed: 15.09.2022). (In Russ.).
[15] Kuritsyn D.N., Boytsov A.G., Kuritsyna V.V. Tekhnologicheskoe obespechenie svarki treniem s peremeshivaniem v proizvodstve aerokosmicheskikh konstruktsiy. Diss. kand. tekh. nauk [Technological maintenance of friction stir welding in production of aerospace constructions. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2021. 159 p. (In Russ.).
[16] Lizin V.T., Pyatkin V.A. Proektirovanie tonkostennykh konstruktsiy [Design of thin-walled constructions]. Moscow, Mashinostroenie Publ., 1976. 408 p. (In Russ.).
[17] Muyzemnek A.Yu., Kartashova E.D. Mekhanika deformirovaniya i razrusheniya polimernykh sloistykh kompozitsionnykh materialov [Deformation and destruction mechanics of polymer layered composites]. Penza, Izd-vo PGU Publ., 2017. 44 p. (In Russ.).