Experimental study of the propulsion system demonstrator with a central body
Authors: Vaulin S.D., Salich V.L., Erpalov A.V., Schulz A.O., Khoroshevskii K.A., Khazhiakhmetov K.I. | Published: 25.11.2023 |
Published in issue: #12(765)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: propulsion system, rocket engine, central body, experimental modal analysis, demonstrator vibration state, acoustic impact |
The paper presents results of testing the propulsion system demonstrator with a central body consisting of sixteen chambers of the low-thrust rocket engines positioned around the central body. Peculiarity of a propulsion system with the central body lies in the presence of self-regulation properties depending on the external environment pressure. Processes were analyzed arising in the propulsion system operation in various modes, including vibration state, thrust control, assessment of the structure natural vibration frequencies and analysis of the sound pressure.
References
[1] Vavilin A.V., Degtyar V.G., Makhankov S.A. et al. Reusable one stage KORONA LV for automatic launching. Aktualnye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamentalnykh i prikladnykh nauchnykh issledovaniy [Current Issues of Automated Spacecraft Design for Fundamental and Applied Scientific Research]. Khimki, NPO im. S.A. Lavochkina Publ., 2017, pp. 118–131. (In Russ.).
[2] Vavilin A.V., Degtyar V.G., Makhankov S.A. et al. [Purpose, possibilities and peculiarities of creation of reusable single-stage “Korona” launch vehicle]. XLI akademicheskie chteniya po kosmonavtike [XLI Academic Readings on Cosmonautics]. Moscow, Bauman MSTU Publ., 2017, pp. 21. (In Russ.).
[3] Vavilin A.V., Degtyar V.G., Makhankov S.A. et al. [On the development of a reusable one-stage Korona launch vehicle. Continuation of works]. XIV akademicheskie chteniya po kosmonavtike. T. 1 [XIV Academic Readings on Cosmonautics. Vol. 1]. Moscow, Bauman MSTU Publ., 2020, pp. 46–48. (In Russ.).
[4] Peshkov R.A., Vaulin S.D., Ismagilov D.R. et al. [Concept of a digital model of a reusable small-lift launch vehicle]. Tezisy 20-oy mezhd. konf. [Abs. 23th Int. Conf.]. Moscow, Pero Publ., 2021, pp. 354–355. (In Russ.).
[5] Vaulin S.D., Khazhiakhmetov K.I. The state-of-the-art and prospects of aerospike engines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 10, pp. 74–83, doi: http://dx.doi.org/10.18698/0536-1044-2021-10-74-83 (in Russ.).
[6] Vaulin S.D., Khazhiakhmetov K.I. K voprosu o proektirovanii dvigatelnykh ustanovok s tsentralnym telom dlya kosmicheskikh apparatov. Nauchnyy poisk. Mat. trinadtsatoy nauch. konf. [Scientific Research. Proc. 13th Sci. Conf.]. Chelyabinsk, YuUrGU Publ., 2021, pp. 39–47. (In Russ.).
[7] Salich V.L. Experimental research on the development of an "oxygen (gas) + kerosene" — fueled thruster. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2018, vol. 17, no. 4, pp. 129–140, doi: https://doi.org/10.18287/2541-7533-2018-17-4-129-140 (in Russ.).
[8] Salich V.L. Development of 25N oxygen-kerosene thruster. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2021, no. 1, doi: http://dx.doi.org/10.18698/2308-6033-2021-1-2050 (in Russ.).
[9] Salich V.L., Taratorin A.V. [Computational and theoretical studies of thermophysical processes in the chamber of a low thrust rocket engine]. Molodezh. Tekhnika. Kosmos. Tr. Dvenadtsatoy obshcheros. molodezh. nauch.-tekh. konf. T. 1 [Youth. Technics. Space. Proc. 12th Russ. Youth Sci.-Tech. Conf. Vol. 1]. Sankt-Petersburg, Voenmekh Publ., 2020, pp. 289–293. (In Russ.).
[10] Bendat J.S., Piersol A.G. Random data. Analysis and measurement procedures. Wiley, 1971. 407 p. (Russ. ed.: Prikladnoy analiz sluchaynykh dannykh. Moscow, Mir Publ., 1989. 540 p.)
[11] Mitra Sanjit K. Digital signal processing. A computer-based approach. McGraw-Hill, 2001. 866 p.
[12] Du D., He E., Huang D. et al. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine. J. Sound Vib., 2018, vol. 437, pp. 53–67, doi: https://doi.org/10.1016/j.jsv.2018.08.023
[13] Kanda T., Mishina Y., Hayasako S. et al. Experimental study on high-frequency combustion instability of liquid-propellant rocket engines using off-design combustion model. Acta Astronaut., 2023, vol. 202, pp. 595–608, doi: https://doi.org/10.1016/j.actaastro.2022.11.006
[14] Salarvand H., Shateri A.R., Nadooshan A.A. et al. Numerical analysis of combustion chamber from vibro-acoustic coupling characteristics point of view. J. Vib. Eng. Technol., 2022, pp. 1–11, https://doi.org/10.1007/s42417-022-00804-5
[15] Heylen W., Lammens S., Sas P. Modal analysis theory and testing. Katholieke Universiteit Leuven, 1998. 319 p.