Two-Phase Dual–Axis Model of a Multihop System with Differentiated Transmission Capacity of its Subscriber and Inter-Satellite Links
Authors: Pichugin S.B. | Published: 06.12.2023 |
Published in issue: #12(765)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: subscriber and inter-satellite links, multihop communication system, on-board router, queuing system, simplest flow |
The paper considers the process of message delivery in a low-orbit multihop communication system. Messages in this system are routed by the relay satellite on-board equipment with a router function being a component of the orbital constellation of the low-orbit communication system. A two-phase dual-axis model of the queuing system is proposed for study. It consists of four service devices with differentiated transmission capacity located on two axes and simulates operation of the subscriber and inter-satellite links. The incoming flows are simple and different for each axis. The model is designed to predict probability of the message delivery through a given number of the inter-satellite links for a given average number of messages arriving at the subscriber link and the arbitrary number of hops along the message route.
References
[1] Pichugin S.B. Subscriber and inter — satellite paths in LEO communications networks. Radiopromyshlennost [Radio Industry], 2019, vol. 29, no. 3, pp. 48–54. (In Russ.).
[2] Pichugin S.B. Sputnikovyy retranslyator «Aksay» [Satellite retransmitter]. Patent RU 2097926. Appl. 19.04.1994, publ. 27.11.1997. (In Russ.).
[3] Pichugin S.B. Sputnikovyy retranslyator [Satellite transmitter]. Patent RU 2673060. Appl. 20.11.2017, publ. 22.11.2018. (In Russ.).
[4] Pichugin S.B. Sputnikovyy retranslyator [Repeater satellite]. Patent RU 2783202. Appl. 09.03.2021, publ. 09.11.2022. (In Russ.).
[5] Antonov A.V. Sistemnyy analiz [System analysis]. Moscow, Vysshaya shkola Publ., 2004. 451 p. (In Russ.).
[6] Buldakova T.I., Mikov D.A. Teoriya sistem i sistemnyy analiz [System theory and analysis]. Moscow, Bauman MSTU Publ., 2021. 45 p. (In Russ.).
[7] Pekhterev S.V., Makarenko S.I., Kovalskiy A.A. Descriptive model of Starlink satellite communication system. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security], 2022, no. 4, pp. 190–255, doi: https://doi.org/10.24412/2410-9916-2022-4-190-255 (in Russ.).
[8] Makarenko S.I. Descriptive model of Iridium satellite communication system. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security], 2018, no. 4, pp. 1–34, doi: https://doi.org/10.24411/2410-9916-2018-10401 (in Russ.).
[9] Kolovskiy I.K., Podolyakin V.N., Shmakov D.N. Ballistic building of the "Gonets-M" orbital constellation for ensuring the inter-satellite link inside orbital plane. Reshetnevskie chteniya, 2018, vol. 1, pp. 30–31. (In Russ.).
[10] Semenov Yu.A. Algoritmy telekommunikatsionnykh setey. Ch. 2. Protokoly i algoritmy marshrutizatsii v Internet [Algorithms of telecommunication networks. Part 2: Routing protocols and algorithms on the Internet]. Moscow, Binom. Laboratoriya znaniy Publ., 2007. 828 p. (In Russ.).
[11] Halabi B., Halabi S., McPherson D. Internet routing architectures. Cisco Press, 2000. 498 p. (Russ ed.: Printsipy marshrutizatsii v Internet. Moscow, Vilyams Publ., 2001. 443 p.)
[12] Pichugin S.B. Simplest flow queuing models for LEO satellite system. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 1, pp. 61–70, doi: http://dx.doi.org/10.18698/0536-1044-2022-1-61-70 (in Russ.).
[13] Nazarov A.A., Terpugov A.F. Teoriya massovogo obsluzhivaniya [Mass service theory]. Tomsk, NTL Publ., 2010. 225 p. (In Russ.).
[14] Nazarov A.A., Terpugov A.F. Teoriya veroyatnostey i sluchaynykh protsessov [Theory of probability and random processes]. Tomsk, NTL Publ., 2010. 199 p. (In Russ.).
[15] Venttsel E.S. Teoriya veroyatnostey [Probability theory]. Moscow, Knorus Publ., 2016. 658 p. (In Russ.).
[16] Vishnevskiy V.M., Dudin A.N., Klimenok V.I. Stokhasticheskie sistemy s korrelirovannymi potokami [Stochastic systems with correlated flows]. Moscow, Tekhnosfera Publ., 2018. 564 p. (In Russ.).