Comparative assessment of tribotechnical properties of the promising EONIT-3, solid-lubricant coating, domestic and foreign coatings for vacuum conditions
Authors: Khopin P.N., Mishakov S.Yu. | Published: 16.01.2025 |
Published in issue: #1(778)/2025 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Development, Design and Manufacture | |
Keywords: solid lubricating coating, thermocorrelation dependencies, tribological characteristics, vacuum conditions |
The paper presents results of analyzing in the vacuum conditions the tribological characteristics of the EONIT-3 promising solid lubricating coating based on graphite and MoS2 of suspension application and the domestic and foreign coatings based on the MoS2 applied by different methods. The resource thermocorrelation dependences on the testing temperature make it possible to establish that in the vacuum conditions at the total friction temperature of 20...112°C, the EONIT-3 coating resource is higher than that of the traditional VNII NP 212 (by 2–7 times) and the foreign coatings based on the MoS2 with magnetron and high-frequency application (by 1.3-8 times). At the volumetric heating temperature of 250…400°C under the vacuum conditions, the friction pair resource with the EONIT-3 coating decreases to 8…9 h. At the same time, the pair friction coefficient during tribological testing under the vacuum conditions remains almost unchanged (at the level of 0.06) in the entire studied range of the friction temperatures of 20…496°C. For friction pairs with the EONIT-3 coating, the resource thermocorrelation and friction coefficient dependencies on the testing temperature are obtained.
EDN: DLEPZV, https://elibrary/dlepzv
References
[1] Drozdov Yu.N., Yudin E.G., Belov A.I. Prikladnaya tribologiya (trenie, iznos i smazka) [Applied tribology (friction, wear and lubrication)]. Moscow, Ekopress Publ., 2010. 604 p. (In Russ.).
[2] Malenkov M.I., Karatushin S.I., Tarasov V.M. Konstruktsionnye i smazochnye materialy kosmicheskikh mekhanizmov [Constructive and lubricating materials of space mechanisms]. Sankt-Petersburg, BGTU Publ., 2007. 54 p. (In Russ.).
[3] Renevier N.M., Hamphire J., Fox V.C. et al. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surf. Coat. Technol., 2001, vol. 142–144, pp. 67–77, doi: https://doi.org/10.1016/S0257-8972(01)01108-2
[4] Braithwaite E.R. Solid lubricants and surfaces. Pergamon Press, 1964. 305 p.
[5] Voevodin A.A., O’Neill J.P., Zabinski J.S. Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol., 1999, vol. 116–119, pp. 36–45, doi: https://doi.org/10.1016/S0257-8972(99)00228-5
[6] Gao X., Fu Y., Jiang D. et al. Responses of TMDs-metals composite films to atomic oxygen exposure. J. Alloys Compd., 2018, vol. 765, pp. 854–861, doi: https://doi.org/10.1016/j.jallcom.2018.06.311
[7] Dugger M.T., Scharf T.W., Prasad S.V. Materials in space: exploring the effect of low earth orbit on thin film solid lubricants. Adv. Mater. Process., 2014, vol. 172, no. 5, pp. 32–35, doi: https://doi.org/10.31399/asm.amp.2014-05.p032
[8] Bronovets M.A. [Hard lubrication coatings in space technology]. Tr. XIV Mezhd. nauch.-tekh. konf. Tribologiya — mashinostroeniyu [Proc. XIV Int. Sci.-Tech. Conf. Tribology for Mechanical Engineering]. Moscow, 2022, IMASh RAN Publ., pp. 64–67. (In Russ.).
[9] Khopin P.N. Test analysis of friction couples with solid lubricant coatings under ground–space conditions and prediction of tribological characteristics. Trenie i iznos, 2018, vol. 39, no. 2, pp. 175–183. (In Russ.). (Eng. version: J. Frict. Wear, 2018, vol. 39, no. 2, pp. 137–144, doi: https://doi.org/10.3103/S1068366618020071)
[10] Khopin P.N. Kompleksnaya otsenka rabotosposobnosti par treniya s tverdosmazochnymi pokrytiyami v razlichnykh usloviyakh funktsionirovaniya [Complex estimation of serviceability of friction pairs with solid-lubricating coatings in different conditions of functioning]. Moscow, MATI Publ., 2012. 256 p. (In Russ.).
[11] Tseev N.A., Kozelkin V.V., Gurov A.A. Materialy dlya uzlov sukhogo treniya, rabotayushchikh v vakuume [Materials for dry friction nodes working in vacuum]. Moscow, Mashinostroenie Publ., 1991. 188 p. (In Russ.).
[12] Dukhovskoy E.A., Ermakov A.T., Lobashev B.P. et al. Ustanovka VVT-1 dlya issledovaniya protsessov treniya materialov v vakuume i razryazhennykh gazovykh sredakh pri temperature do 1000 °S [Installation VVT-1 for investigation of friction processes of materials in vacuum and rarefied gas media at temperatures up to 1000 °С]. V: Trenie i iznashivanie pri vysokikh temperaturakh [In: Friction and wear at high temperatures]. Moscow, Nauka Publ., 1973, pp. 5–8. (In Russ.).
[13] Efimov A.I. Issledovanie rabotosposobnosti metalloftoroplastovykh podshipnikov skolzheniya primenitelno k mashinam legkoy i tekstilnoy promyshlennosti. Avtoref. diss. kand. tekh. nauk [Investigation of serviceability of metal-fluoroplastic sliding bearings as applied to machines of light and textile industry. Abs. kand. tech. sci. diss.]. Moscow, VNIILTEKMASh Publ., 1971. 16 p. (In Russ.).
[14] Miyoshi K., Iwaki M., Gotoh K. et al. Friction and wear properties of selected solid lubricating films. NASA/TM-1999-209088/Part 1. 30 p.
[15] Spalvins T. Lubrication with sputtered MoS2 films. NASATM X- 67832. Lewis Research Center, 1971. 16 p.