Recuperative heat-exchange apparatus with porous metal for a liquid-propellant rocket engine
Authors: Pelevin F.V., Ponomarev A.V., Semenov P.Y. | Published: 16.06.2015 |
Published in issue: #6(663)/2015 | |
Category: Aviation, Rocket and Technology | |
Keywords: recuperative heat-exchange apparatus, porous mesh metal, inter-channel coolant transpiration, heat-exchange efficiency |
The application of diffusion-vacuum welding of woven metal meshes for manufacturing porous metals and the concept of inter-channel coolant transpiration is the basis for developing new high performance porous heat-exchange pathways for recuperative heat-exchange apparatuses. The paper presents a new recuperative heat-exchange apparatus based on the concept of inter-channel coolant transpiration through a porous mesh metal. It has been shown that the heat exchange efficiency in a pathway with inter-channel coolant transpiration through porous mesh metal with inter-mesh filtration of the coolant is higher when compared to other heat-exchange pathways. It has been established that the pathway efficiency is particularly high at low Reynolds numbers in the range of 1·103…5·104. The efficiency increases when the path of the coolant movement through the porous mesh metal decreases, and the porous mesh metal thermal conductivity increases. Recommendations for the optimal design of recuperative heat-exchange apparatus based on the concept of inter-channel coolant transpiration through porous mesh metal have been presented. The results obtained can be used for designing recuperative heat-exchange apparatuses for pressurization of fuel tanks of liquid-propellant rocket engines.
References
[1] Gromyko B.M., Kliueva O.G. Sovershenstvovanie teploobmennikov dlia nadduva bakov raketynositelia. Ch. 1. Kozhukhotrubchatyi isparitel’ azota dvigatelia RD107 [Improvement of heat exchangers for tank pressurization launcher. Pt. 1. Shell and tube evaporator nitrogen RD107 engine]. Trudy NPO Energomash im. akademika V.P. Glushko[Proceedings of the NGO Energomash named after Academician V.P. Glushko]. Moscow, NPO Energomash publ., 2006, no. 24, pp. 246–255.
[2] Kliueva O.G. Sovershenstvovanie teploobmennikov dlia nadduva bakov rakety-nositelia. Ch. 2. Tsilindricheskii teploobmennik dvigatelia RD171 [Improvement of heat exchangers for tank pressurization launcher. Pt. 2. The cylindrical heat engine RD171]. Trudy NPO Energomash im. akademika V.P. Glushko [Proceedings of the NGO Energomash named after Academician V.P. Glushko]. Moscow, NPO Energomash publ., 2006, no. 24, pp. 256–271.
[3] Belov E.A., Grigorkin N.M., Kliueva O.G. Opyt sozdaniia i obespecheniia rabotosposobnosti plastinchato-rebristykh teploobmennikov dlia nadduva bakov raket-nositelei. Trudy NPO Energomash im. akademika V.P. Glushko [Proceedings of the NGO Energomash named after Academician V.P. Glushko]. Moscow, NPO Energomash publ., 2010, no. 27, pp. 167–271.
[4] Pelevin F.V., Il’inskaia O.I., Orlin S.A. Primenenie komplanarnykh kanalov v tekhnike [Using coplanar channels in technology]. Vestnik PNIPU. Aerokosmicheskaia tekhnika [PNRPU Aerospace Engineering Bulletin]. 2014, no. 37, pp. 71–85.
[5] Polyakov A.F., Strat’Ev V.K., Tretyakov A.F., Shekhter Yu.L. Heat transfer in envelopes made of porous network materials. Thermal Engineering, 2009, vol. 56, no. 3, pp. 227–234.
[6] Polyakov A.F., Shekhter Yu.L., Strat’ev V.K., Tret’yakov A.F. Generalization of experimental data on heat transfer in permeable shells made of porous reticular materials. Thermal Engineering, 2010, vol. 57, no. 6, pp. 516-521.
[7] Zeigarnik Iu.A., Ivanov F.P. K otsenke teplogidravlicheskikh kharakteristik poristykh struktur [Estimation of thermal-hydraulic characteristics of porous structures]. Trudy Piatoi Rossiiskoi natsional’noi konferentsii po teploobmenu [Proceedings of the Fifth Russian National Conference on Heat Transfer]. Moscow, MEI publ., 2010, vol. 5, pp. 172–175.
[8] Zeigarnik Yu.A., Ivanov F.P. Generalization of experimental data on internal heat transfer in porous structures. High Temperature, 2010, vol. 48, no. 3, pp. 382–387.
[9] Nauchnye osnovy tekhnologii 21 veka [Scientific bases of technology of the 21 century]. Ed. Leont’ev A.I., Piliugin N.N., Polezhaev Iu.V., Poliaev V.M. Moscow, UNPTs Energomash publ., 2000. 136 p.
[10] Materialy i pokrytiia v ekstremal’nykh usloviiakh. Vzgliad v budushchee. V 3-kh tomakh. Tom 2. Peredovye tekhnologii proizvodstva [Materials and coatings under extreme conditions. A look into the future. In 3 vol. Vol. 2. Advanced production technology]. Ed. Reznik S.V. Moscow, Bauman Press, 2002. pp. 186–254.
[11] [11] Demianko Iu.G., Koniukhov G.V., Koroteev A.S., Kuz’min E.P., Pavel’ev A.A. Iadernye raketnye dvigateli [Nuclear rocket engines]. Moscow, OOO Norma-Inform publ., 2001. 416 p.