The Methodology of Selection of an Autoclave Barothermal Processing Mode for the Heat-Shield of Re-Entering Spacecraft
Authors: Tarasov V.A., Romanenkov V.A., Komkov M.A., Boyarskaya R.V. | Published: 28.09.2015 |
Published in issue: #9(666)/2015 | |
Category: Aviation, Rocket and Technology | |
Keywords: autoclave, heat-shielding, composite design, polymerization and viscosity binding, relationship between the continuous temperature change of a product and step change of the nitrogen pressure |
The article presents a topical issue of organization of autoclave processing for a heat shield of composite design. It explores the theoretical relationship between the law of the temperature change of the product and the step change of the pressure of nitrogen, which is used as the technological medium. The data obtained by the control and measuring instruments of the autoclave control system is analyzed, and a mathematical relationship is established between the consumption power of the thermoelectrical heaters and the product temperature. This relationship takes into account specific design features of the technological equipment. The authors propose a method for calculating the consumed mass of nitrogen and the consumed power required to generate and heat the nitrogen from the point of view the gasdynamic and thermophysical processes in the autoclave. It is shown that to coordinate the moment of additional nitrogen supply and the amplitude of the pressure change it is appropriate to use the criterion of minimum power consumption required to generate and heat the nitrogen in the autoclave. The comparison of the proposed method with the experimental testing of the modes of the technological process has shown the high efficiency of the method.
References
[1] Tarasov V.A., Romanenkov V.A., Komkov M.A. Tekhnologicheskie osnovy snizheniia dlitel’nosti tsikla i povysheniia bezopasnosti izgotovleniia teplovoi zashchity spuskaemykh kosmicheskikh apparatov [Technological principles of reducing the cycle time and improving the manufacturing safety of the thermal protection system for spacecraft reentry]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2014, no. 8, pp. 35–43.
[2] Strekalov A.F., Pashchenko V.A., Romanenkov V.A., Morokova E.V., Bazanov V.V., Zimovskii A.V., Andriianov V.S., Starostin V.V., Tarasov V.A., Filimonov A.S. Termovakuumnaia ustanovka dlia obrabotki izdeliia(ii) [Thermal vacuum unit for processing the product(s)]. Patent RF no. 2439455, 2010.
[3] Strekalov A.F., Pashchenko V.A., Romanenkov V.A., Morokova E.V., Bazanov V.V., Zimovskii A.V., Andriianov V.S., Starostin V.V., Tarasov V.A., Filimonov A.S. Sposob izgotovleniia mnogosloinykh izdelii [Method of manufacturing multilayer products]. Patent RF no. 2450921, 2012.
[4] Tarasov V.A., Beliakov E.V. Matematicheskoe modelirovanie protsessa neizotermicheskogo otverzhdeniia polimernykh kompozitnykh konstruktsii RKT [Mathematical Simulation of Nonisothermal Hardening of Polymeric Composite Structures of Rocket and Space Machinery]. Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. 2011, no. 1(82), pp. 106–116.
[5] Tiukov N.I., Dautov A.I., E.A. Zakurdaeva E.A. Matematicheskaia model’ protsessa formovaniia detalei vertoleta iz kompozitsionnykh materialov [Mathematical model of helicopter parts molding of composite materials]. Vestnik UGATU [Bulletin USATU]. 2007, vol. 9, no. 7(25), pp. 97–101.
[6] Senoguz M.T., Dungan F.D., Sastry A.M., Klamo J.T. Simulations and Experiments on Low-Pressure Permeation of Fabrics: Part II. The Variable Gap Model and Prediction of Permeability. Journal of composite materials, 2001, vol. 35, iss. 14, pp. 1285–1322.
[7] Mishchenko S.V., Dmitriev O.S., Shapovalov A.V. i dr. Matematicheskoe modelirovanie protsessa otverzhdeniia izdelii iz polimernykh kompozitsionnykh materialov metodom vakuumnogo avtoklavnogo formovaniia v tekhnologicheskom pakete [Mathematical modeling of solidification products from polymeric composite materials by vacuum autoclave molding technology packages]. Vestnik TGTU [Bulletin TSTU]. 2001, vol. 7, no. 1, pp. 7–19.
[8] Komkov M.A., Tarasov V.A., Kuznetsov V.M. Issledovanie vliianiia viazkosti epoksidnykh sviazuiushchikh na stepen’ propitki voloknistykh napolnitelei [Viscosity influence investigation of epoxy binders on impregnation degree of fiber fillers]. Klei. Germetiki. Tekhnologii [Adhesives. Sealants]. 2015, no. 4, pp. 24–27.
[9] Komkov M.A. Rheological Properties of Polymer Binders Used in the Windings of Products of Composite Materials. Polymer Science Series D, 2013, vol. 6, iss. 1, pp. 26–30. Doi: 10.1134/S1995421212040089.http://link.springer.com/article.
[10] Komkov M. A., Tarasov V. A. Vliianie viazkosti sviazuiushchego v propitochnoi vanne na poristost’ kompozita pri mokrom sposobe namotke [A binder viscosity effect on the wet-wounded composite porosity in the impregnating bath]. Nauka i Obrazovanie. MGTU im. N.E. Baumana [Science and Education. BMSTU]. 2014, no. 12, pp. 192–199. Available at: http://technomag.bmstu.ru/doc/745284.html (accessed 10 May 2015). Doi: 10.7463/1214.0745284.
[11] Kollinz R. Techenie zhidkosti cherez poristye materialy [Fluid flow through porous materials]. Moscow, Mir publ., 1964. 284 p.
[12] Campbell F.C. Manufacturing processes for advanced composites. Elsevier Science, 2004. 532 p.
[13] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Technology winding composite structures missiles and weapons]. Moscow, Bauman Press, 2011. 431 p.