Numerical and Experimental Determination of the Optimal Length of Cylindrical Mixing Chamber of Supersonic Gas Ejector
Authors: Akimov M.V., Safargaliev T.D., Papyrin P.V. | Published: 20.11.2015 |
Published in issue: #11(668)/2015 | |
Category: Aviation, Rocket and Technology | |
Keywords: gas ejector, optimal length of a cylindrical mixing chamber, numerical calculation, critical operation |
The article presents the results of numerical calculations and experimental investigations of supersonic gas ejectors with cylindrical mixing chambers of different lengths. The calculations were performed using Ansys Fluent 12.0 software package. Satisfactory agreement between the calculated and the experimental values of the optimal relative length of the cylindrical mixing chamber is shown. The optimal relative length is in the range of 12–15 calibers. When the mixing chamber relative length is more than 7-8 calibers, the calculating error of the basic parameters of the supersonic gas ejector does not exceed 11%, while for smaller relative lengths it reaches 35%. The results of numerical simulation of the flow show that during critical operation stages a supersonic non-uniform gas jet is formed in the cylindrical mixing chamber. The jet is decelerated through a complex system of shock waves, the length of which may be several calibers depending on the ejector working conditions.
References
[1] Vasil’ev Iu.N. Teoriia sverkhzvukovogo gazovogo ezhektora s tsilindricheskoi kameroi smesheniia [Theory of supersonic gas ejector having a cylindrical mixing chamber]. Lopatochnye mashiny i struinye apparaty: sbornik statei [Shoulder machines and inkjet devices: collection of articles]. Moscow, Mashinostroenie publ., 1967, iss. 2, pp. 171–235.
[2] Milionshchikov M.D., Riabinkov G.M. Gazovye ezhektory bol’shikh skorostei [Gas ejector at high speed]. Sbornik rabot po issledovaniiu sverkhzvukovykh gazovykh ezhektorov: Trudy TsAGI [Collection of papers on the study of supersonic gas ejectors: Trudy TsAGI]. Moscow, 1961, pp. 5–32.
[3] Tsegel’skii V.G., Akimov M.V., Safargaliev T.D. Eksperimental’no-teoreticheskoe issledovanie rezhimov raboty sverkhzvukovykh gazovykh ezhektorov s tsilindricheskoi i konicheskoi kamerami smesheniia [Experimental and theoretical investigation of operating modes of supersonic gas ejectors with cylindrical and conical mixing chambers]. Izvestiia vysshikh uchebnykh zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2012, no. 3, pp. 48–58.
[4] Yinhai Zhu, Wenjian Cai, Changyun Wen, Yanzhong Li. Numerical investigation of geometry parameters for design of high performance ejectors. Journal Applied Thermal Engineering, 2009, vol. 29(5-6), pp. 989–905.
[5] Molchanov A.M. Raschet sverkhzvukovykh neizobaricheskikh strui s popravkami na szhimaemost’ v modeli turbulentsii [Calculation of supersonic non-isobaric jets with compressibility corrections in a turbulence model]. Vestnik Moskovskogo aviatsionnogo institute [Herald of Moscow Aviation Institute]. 2009, vol. 16, no. 1, pp. 38–48.
[6] Hemidi A., Henry F., Leclaire S., Seynhaeve J., Bartosiewicz Y. CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation. Applied Thermal Engineering, 2009, vol. 29, iss. 8-9, pp. 1523–1521.
[7] Andreev E.A., Safargaliev T.D. Eksperimental’noe izuchenie kharakteristik sverkhzvukovogo gazo-gazovogo ezhektora s tsilindricheskoi kameroi smesheniia [Experimental study of the characteristics of a supersonic gas-gas ejector having a cylindrical mixing chamber]. Moscow, 2012. 1 CD-ROM.
[8] Bartosiewcz Y., Aidoun Z., Desevaux P., Mercadier Y. CFD-experiments integration in the evaluation of six turbulence models for supersonic ejectors modeling. Conference Proc., Integrating CFD and Experiments, Glasgow, UK, 2003, pp. pp. 1–10.
[9] Hemidi A., Henry F., Leclaire S., Seynhaeve J., Bartosiewicz Y. CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features. Applied Thermal Engineering, 2009, vol. 29, iss. 14-15, pp. 2990–2998.