Analytic Hierarchy Process for Weight Coefficient Definition of Performance Function for Optimization of Hybrid Composite Wing for Reusable Space Vehicle
Authors: Pilyugina A.V., Ageyeva T.G. | Published: 20.11.2015 |
Published in issue: #11(668)/2015 | |
Category: Aviation, Rocket and Technology | |
Keywords: reusable space vehicle, hybrid composite materials, wing, multi-criteria optimization, analytic hierarchy process |
In most cases, the optimization problem for composite material constructions involves considering multiple criteria, and the performance function parameters often conflict with each other. One of the solutions in such cases is the reduction of the multi-criteria problem to a single-criterion problem through generating one performance function that includes all the objective variables. The problem of generating a performance function at the initial design stage lies in the fact that the inversely related parameters may differ in order and furthermore, may have different importance (weighting). This problem can be solved by normalizing the parameters contained in the function, and determining the importance of each parameter by introducing weight coefficients. The weight coefficient values can be defined through expert evaluations. In this paper the authors determine weight coefficients for the performance func tion for optimization of a hybrid composite wing for a reusable tourist class space vehicle with the help analytic hierarchy process, one of the traditional methods in decision theory.
References
[1] Banichuk N.V., Kobelev V.V., Rikards R.B. Optimizatsiia elementov konstruktsii iz kompozitsionnykh materialov [Optimization of structural elements made of composite materials]. Moscow, Mashinostroenie publ., 1988. 224 p.
[2] Gavriushin S.S., Evgenev G.B. Mnogokriterial’naia optimizatsiia v zhiznennom tsikle izdelii [Multicriteria Optimization in the Life Cycle of Products]. Informatsionnye tekhnologii [Information Technologies]. 2014, no. 2, pp. 37–42.
[3] Statnikov R.B., Gavriushin S.S., Dang M.H., Statnikov A.R. Multicriteria Design of Composite Pressure Vessels. International Journal of Multicriteria Decision Making, 2014, vol. 4, no. 3, pp. 252–278.
[4] Karpenko A.P. Sovremennye algoritmy poiskovoi optimizatsii. Algoritmy, vdokhnovlennye prirodoi [Modern algorithms of search engine optimization. Algorithms inspired by nature]. Moscow, Bauman Press, 2014. 446 p.
[5] Reznik S.V., Ageeva T.G. Sravnitel’nyi analiz konstruktivno-tekhnologicheskogo sovershenstva mnogorazovykh kosmicheskikh apparatov [Comparative analysis of the structural and technological excellence reusable spacecraft]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie. Spets. vypusk «Aktual’nye problemy razvitiia raketnokosmicheskoi tekhniki i sistem vooruzheniia» posviashchennyi 180-letiiu MGTU im. N.E. Baumana [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering. Special issue «Actual problems of development of rocket and space technology and weapons systems» dedicated to the 180th anniversary of the BMSTU]. 2010, pp. 19–34.
[6] Reznik S.V., Prosuntsov P.V., Ageeva T.G. Optimal’noe proektirovanie kryla suborbital’nogo mnogorazovogo kosmicheskogo apparata iz gibridnogo polimernogo kompozitsionnogo materiala [Optimal design of the suborbital reusable spacecraft wing made of polymer composite]. Vestnik NPO im. S.A. Lavochkina [Bulletin NPO named after S.A. Lavochkin]. 2013, no. 1(17), pp. 38–43.
[7] Vasil’ev V.V., Dobriakov A.A., Dudchenko A.A. Osnovy proektirovaniia i izgotovleniia konstruktsii letatel’nykh apparatov iz kompozitsionnykh materialov [Fundamentals of design and manufacture of aircraft structures made of composite materials]. Moscow, MAI publ., 1985. 218 p.
[8] Chegodaev A.I. Matematicheskie metody analiza ekspertnykh otsenok [Mathematical Methods of Expert Estimation Analysis]. Vestnik Samarskogo gosudarstvennogo ekonomicheskogo universiteta [Vestnik of Samara State University of Economics]. 2010, no. 2(64), pp. 130–135.
[9] Orlov A.I. Organizatsionno-ekonomicheskoe modelirovanie. V 3 ch. Ch. 2 [Organizationaleconomic modeling. In 3 pt. Pt. 2]. Moscow, Bauman Press, 2009. 486 p.
[10] Shtoier R. Mnogokriterial’naia optimizatsiia. Teoriia, vychisleniia i prilozheniia [Multicriteria optimization. The theory, computation and applications]. Moscow, Radio i sviaz’ publ., 1992. 504 p.
[11] Saati T. Priniatie reshenii. Metod analiza ierarkhii [Making decisions. Analytic hierarchy]. Moscow, Radio i sviaz’ publ., 1993. 278 p.
[12] Triantaphyllou E., Mann S.H. Using the Analytic Hierarchy Process for Decision Making in Engineering Applications: Some Challenges. International Journal of Industrial Engineering: Applications and Practice, 1995, vol. 2, no. 1, pp. 35–44.
[13] Omel’chenko I.N., Piliugina A.V., Ivanov A.G. Priniatie reshenii o vybore ratsional’noi struktury kapitala predpriiatiia na osnove metoda analiza ierarkhii [Making decisions about the choice of a rational capital structure of the enterprise, based on the analytic hierarchy process]. Moscow, Bauman Press, 2011. 20 p.