Numerical Analysis of the Thermal State of the Resonator in a Gas-Dynamic Ignition System with Two-Phase Fuel Composition
Authors: Vorozheeva O.A., Arefyev K.Yu. | Published: 11.05.2016 |
Published in issue: #5(674)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: thermal state, gas-dynamic ignition system, two-phase fuel composition, mathematical modeling, ethanol, temperature field, resonator, pulsed mode |
The use of gas-dynamic ignition systems (GIS) when initiating modern high-enthalpy flow generators on basic fuel components is currently relevant. The high thermal loading of the GIS structure elements requires the prediction of life characteristics and time limits of the system’s operation. This paper presents the mathematical model and calculation results of the thermal state of the resonator, the most thermally loaded element of the GIS structure. The calculations are carried out in axisymmetric nonstationary settings, taking into account convective and radiative heat exchange between the resonator and the products of combustion, as well as the heat transfer to other elements of the GIS structure. The thermal state of the resonators made of 12Kh18N10Т steel, KhN60VT chrome-nickel alloy and BrKh08 heat-resistant bronze is investigated when the GIS is operated in continuous and pulsed modes. The GIS operating time until the start of thermomechanical failure of the resonator is determined. A comparative analysis of the obtained results is performed. Recommendations are given on the application of the considered materials when manufacturing resonators.
References
[1] Voronetskii A.V., Aref’ev K.Iu., Zakharov V.S. Raschetno-teoreticheskoe issledovanie rezonansnoi sistemy gazodinamicheskogo vosplameneniia ZhRD maloi tiagi [Computational-Theoretical Study of Resonant System of Gasdynamical Ignition for Low-Thrust Liquid-Propellant Rocket Engines]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2012, no. 1, pp. 31–41.
[2] Thompson P.A. Resonance tubes: PhD Thesis. Massachusetts, Inst. of Technology, 1960. 121 p.
[3] Kuptsov V.M., Semenov V.V. Gazodinamicheskii nagrevatel’ s diffuzorom [The gas-dynamic heater with a diffuser]. Izvestiia vuzov. Aviatsionnaia tekhnika [Russian Aeronautics]. 1989, no. 4, pp. 44–47.
[4] Karpov S.A. Preimushchestva toplivnogo etanola pered metanolom i ego proizvodnymi: obzor [Advantages of fuel ethanol to methanol and its derivatives: a review]. Ekologiia promyshlennogo proizvodstva [Ecology of industrial production]. 2007, no. 1, pp. 57–63.
[5] Shpak B.C., Shapovalov O.I., Kartashov Iu.I., Rumiantsev V.N., Serdiuk V.V., Asheinazi L.A. Toplivnyi etanol i ekologiia [Fuel ethanol and ecology]. Khimicheskaia promyshlennost’ [Industry & Chemistry]. 2006, vol. 83, no. 2, pp. 89–96.
[6] Yu J., Zhang X., Tan T. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. Journal of Biotechnology, 2007, vol. 129 (3), pp. 415–420.
[7] Voronetskii A.V., Polianskii A.R., Aref’ev K.Iu. Chislennyi analiz nekonservativnykh akusticheskikh sistem primenitel’no k ustroistvam initsiatsii rabochego protsessa v generatorakh vysokoental’piinykh potokov [Numerical analysis of non-conservative acoustic systems for working process initialization devices in high-enthalpy flow generators]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2012, no. 2. Available at: http://www.technomag.edu.ru/doc/339499.html (accessed 15 Mach 2012).
[8] Aleksandrov V.Iu., Aref’ev K.Iu., Il’chenko M.A. Metody issledovaniia nestatsionarnykh protsessov v gazodinamicheskoi sisteme vosplameneniia toplivnoi smesi [Methods of study non-stationary processes in the gas-dynamic system of ignition of the fuel mixture]. Mat. 14 mezhdunar. shkoly-seminara ‘‘Modeli i metody aerodinamiki’’ [Materials 14 international school-seminar ‘‘Models and methods of aerodynamics’’]. Moscow, CAGI, 2014, pp. 6–7.
[9] Rabochie protsessy v zhidkostnom raketnom dvigatele i ikh modelirovanie [Work processes in liquid rocket engines and their modeling]. Ed. Koroteev A.S. Moscow, Mashinostroenie publ., 2008. 512 p.
[10] Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei [Fundamentals of the theory and calculation of liquid-propellant rocket engines]. Ed. Kudriavtsev V.M. Moscow, Vysshaia shkola publ., 1993. 367 p.
[11] Kuz’min M.P., Lagun I.M. Nestatsionarnyi teplovoi rezhim elementov konstruktsii dvigatelei letatel’nykh apparatov [Non-stationary thermal regime elements aircraft engine design]. Moscow, Mashinostroenie publ., 1988. 240 p.
[12] Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike [Fundamentals of heat transfer in the aviation and space technology]. Ed. Avduevskii V.S., Koshkin V.K. Moscow, Mashinostroenie publ., 1992. 528 p.