Profiling of the Turbo Compressor Inlet Nozzle of an Aircraft Engine
Authors: Grishin Yu.A., Buzin A.V., Semenchukova V.S. | Published: 10.08.2016 |
Published in issue: #8(677)/2016 | |
Category: Aviation, Rocket and Technology | |
Keywords: aircraft diesel engine, radial compressor, inlet nozzle, computational simulation |
Using the STAR-CD software, the authors perform computational simulation of three-dimensional air flow for several configurations of the radial compressor flow channel that is used for surcharging aircraft diesel engines. The Navier — Stokes equations for viscous gas are used to describe the flow. The k–ε turbulence model is applied to account for the turbulent mixing processes. Based on the modeling results, the nozzle that provides efficient swirling with the most uniform flow at the working wheel inlet and minimal full pressure losses is chosen.
References
[1] Kotel’nikov V.R. Otechestvennye aviatsionnye porshnevye motory (1910-2009) [Domestic aviation reciprocating engines (1910-2009)]. Moscow, Russkii Fond Sodeistviia Obrazovaniiu i Nauke publ., 2010. 504 p.
[2] Aviadvigatelestroenie: Entsiklopediia [The Aircraft Engine: An Encyclopedia]. Ed. Chuiko V.M., Moscow, Aviamir publ., 1999. 300 p.
[3] Simson A.E., Kaminskii V.N., Morgulis Iu.B., Povetkin G.M., Azbel’ A.B., Kochetkov V.A. Turbonadduv vysokooborotnykh dizelei [The turbocharged high-speed diesel engines]. Moscow, Mashinostroenie publ., 1976. 288 p.
[4] Grishin Iu.A., Dorozhinskii R.K. Zenkin V.A. Chislennoe modelirovanie turbulentnogo techeniia cherez klapany porshnevykh dvigatelei [Numerical modeling of turbulent flow through valves of piston engines]. Vestnik Mashinostroeniia [Russian Engineering Research]. 2016, no. 1, pp. 24–28.
[5] Grishin Iu.A., Bakulin V.N. Chislennoe issledovanie techeniia v tsentrobezhnom kompressore [Numerical study of flow in a centrifugal compressor]. Inzhenerno-fizicheskii zhurnal [Journal of Engineering Physics and Thermophysics]. 2015, vol. 88, no. 5, pp. 1232–1236.
[6] Grishin Iu.A., Bakulin V.N. Novye raschetnye skhemy na baze metoda krupnykh chastits dlia modelirovaniia gazodinamicheskikh zadach [New design scheme based on the method of macroparticles for simulation gas dynamic problems]. Doklady akademii nauk [Doklady of Academy of Sciences]. 2015, vol. 465, no. 5, pp. 545–548.
[7] Kavtaradze R.Z. Teoriia porshnevykh dvigatelei [The theory of piston engines]. Moscow, Bauman Press, 2008. 720 p.
[8] Chesnokov S.A., Dunaev V.A. Teplomassoobmen i gorenie v avtomobil’nykh dvigateliakh [Heat and mass transfer and combustion in automotive engines]. Tula, TSU publ., 2012. 400 p.
[9] Popov D.N., Panaioti S.S., Riabinin M.V. Gidromekhanika [Hydromechanics]. Moscow, Bauman Press, 2014. 317 p.
[10] Zalizniak V.E. Osnovy vychislitel’noi fiziki. Ch.1. Vvedenie v konechno-raznostnye metody [Basics of computational physics. Part 1. Introduction to finite difference methods]. Moscow, Tekhnosfera publ., 2008. 224 p.
[11] Fletcher C.A.J. Computational Techniques for Fluid Dynamics 2: Specific Techniques for Different Flow Categories. Berlin, Heidelberg, New York, Springer-Verlag, 1998. 496 p.
[12] Zieher F., Langmayr F., Jelatancev A., Wieser K. Thermal Mechanical Fatigue Simulation of Cast Iron Cylinder Heads. SAE 2005 World Congress, Detroit, 2005. 12 p.
[13] Patankar S.V. Chislennye reshenie zadach teploprovodnosti i konvektivnogo teploobmena pri techenii v kanalakh [Numerical solution of problems of thermal conductivity and convective heat transfer during flow in channels]. Moscow, MPEI publ., 2003. 312 p.
[14] Automated Flow, Thermal, and Stress Simulation Software and Services for CFD and CAE Solutions. Available at: http://www.cd-dapco.com/sites/default/files/brochure/pdf/Oil_and_Gas_Brochure.pdf (accessed 10 Mach 2016).