The Study of Cylindrical Duct Cooling by Solid Hydrocarbon Fuel Gasification Products
Authors: Arefyev K.Yu., Fedotova K.V., Yanovskiy L.S., Averkov I.S., Baykov A.V. | Published: 27.01.2017 |
Published in issue: #1(682)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: one-dimensional mathematical model, thermal state modeling of combustion chamber walls, axisymmetric ramjet duct, combustion chamber, solid hydrocarbon fuel, cooling capacity of gasification products |
This paper presents a model to describe heat transfer in a cylindrical duct, such as a combustion chamber (CC), where the wall is cooled by solid hydrocarbon fuel gasification products. The effects of phase and chemical transformations inside the regenerative cooling system ducts are examined taking into account the nonequilibrium state of the working flow in the CC duct. The main design requirements and the CC operating modes are determined, at which bearable temperature conditions of the wall can be guaranteed by cooling the wall by solid hydrocarbon fuel gasification products. It is pointed out that the required duct geometry depends on the air-to-fuel ratio as well as the mass flow rate of combustion products in the duct. Main requirements to the solid hydrocarbon fuel and its gasification products are formulated. Several hydrocarbon fuels are compared, and recommendations on the use of these fuels in high-speed ramjets are developed. The results obtained can be used to develop high-speed ramjets, and promising propulsion and technological systems, in which solid hydrocarbon is used as fuel.
References
[1] Kondratiuk E.L. Issledovaniia, provodimye v SShA v oblasti sozdaniia giperzvukovykh letatel’nykh apparatov [Studies conducted in the US in the field of hypersonic aircraft]. Dvigatel’ [Engine]. 2013, no. 1, pp. 8–11.
[2] Zhukov B.P. Energeticheskie kondensirovannye sistemy [Energy condensed systems]. Moscow, Ianus publ., 1999. 596 p.
[3] Surikov E.V., Babkin V.I., Sharov M.S., Ianovskii L.S., Shirin A.P. Priamotochnyi vozdushno-reaktivnyi dvigatel’ na tverdom goriuchem i sposob funktsionirovaniia dvigatelia [Ramjet engine on solid fuel and method of functioning of the engine]. Patent RF no. 2565131, 2015. 8 p.
[4] Sorokin V.A., Ianovskii L.S., Kozlov V.A. Raketno-priamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniia i eksperimental’noi otrabotki [Rocket ramjet engine on solid and pasty fuels. Fundamentals of design and experimental testing]. Moscow, Fizmatlit publ., 2010. 320 p.
[5] Shigabiev T.N., Ianovskii L.S., Galimov F.M., Ivanov V.F. Endotermicheskie topliva i rabochie tela silovykh i energeticheskikh ustanovok [Endothermic fuel and working bodies of power and power plants]. Kazan’, KSTU publ., 1996. 264 p.
[6] Sinditskii V.P., Egorshev V.Yu., Berezin M.V., Serushkin V.V. Mechanism of HMX combustion in a wide range of pressures. Combustion, Explosion, and Shock Waves, 2009, vol. 45, no. 4, pp. 461–477.
[7] Arefyev K.Yu., Fedotova K.V., Yanovskiy L.S. The Analysis of Combustion Chambers Cooling Conditions by Means of Polymeric Compound Gasification Products. 31 International Conference on Interaction of Intense Energy Fluxes with Matter, March 1–6 2016, Elbrus, Russia, 215 p.
[8] Varenykh N.M., Shabunin A.I., Sarab’ev V.I., Khrisantov M.V., Shibanov S.V., Kalinin S.V. Osnovnye napravleniia razrabotki tverdykh pirotekhnicheskikh topliv dlia vozdushno-reaktivnykh dvigatelei s povyshennymi energo-ballisticheskimi kharakteristikami [The main directions of development of solid pyrotechnic fuel for jet engines with high energy-ballistic characteristics]. Boepripasy i spetskhimiia [Ammunition and special chemical]. 2013, no. 1, pp. 44–50.
[9] Bakulin V.N., Dubovkin N.F., Kotova V.N., Sorokin V.A., Frantskevich V.P., Yanovskii L.S. Energoemkie goriuchie dlia aviatsionnykh i raketnykh dvigatele [Energy-intensive fuels for aircraft and rocket engines]. Moscow, Fizmatlit publ., 2009. 320 p.
[10] Aleksandrov V.Iu., Aref’ev K.Iu., Voronetskii A.V. Issledovanie effektivnosti regenerativnoi sistemy okhlazhdeniia sverkhzvukovykh priamotochnykh vozdushno-reaktivnykh dvigatelei na uglevodorodnom goriuchem [Efficiency Analysis of the Regenerative Cooling System for Supersonic Ramjet on Hydrocarbon Fuel]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2014, vol. 6, no. 11, pp. 489–495.
[11] Annushkin Iu.M. Osnovnye zakonomernosti vygoraniia turbulentnykh strui vodoroda v vozdushnykh kanalakh [Basic laws of burnout turbulent hydrogen jet in air ducts]. FGV [Combustion, Explosion, and Shock Waves]. 1981, no. 4, pp. 59–71.
[12] Trusov B.G. Programmnaia sistema TERRA dlia modelirovaniia fazovykh i khimicheskikh ravnovesii pri vysokikh temperaturakh [TERRA system software for the simulation of phase and chemical equilibria at high temperatures]. Gorenie i plazmokhimiia. Materialy 3 Mezhdunarodnogo simpoziuma [Burning and plasma chemistry. Proceedings of the 3 International Symposium]. Almaty, KNU publ., 2005, pp. 52–57.
[13] Aver’kov I.S., Aleksandrov V.Iu., Aref’ev K.Iu., Voronetskii A.V., Gus’kov O.V., Prokhorov A.N., Ianovskii L.S. Vliianie polnoty sgoraniia topliva na kharakteristiki priamotochnykh vozdushno-reaktivnykh dvigatelei [The influence of combustion on the characteristics of ramjet engines]. Teplofizika vysokikh temperatur [High temperature]. 2016, no. 6, pp. 939–949.
[14] Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriia raketnykh dvigatelei [Theory of rocket engines]. Moscow, Mashinostroenie publ., 1980. 547 p.
[15] Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike [Fundamentals of heat transfer in the aviation and space technology]. Ed. Avduevskii V.S. Moscow, Nauka publ., 1992. 528 p.
[16] Zhidkostnye raketnye dvigateli. Osnovy proektirovaniia [Liquid rocket engines. Design principles]. Ed. Iagodnikov D.A. Moscow, Bauman Press, 2016. 461 p.
[17] Gus’kov O.V., Kopchenov V.I., Lipatov I.I., Ostras’ V.N., Starukhin V.P. Protsessy tormozheniia sverkhzvukovykh techenii v kanalakh [Braking processes of supersonic flows in channels]. Moscow, Fizmatlit publ., 2008. 168 p.
[18] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Energiia publ., 1977. 344 p.
[19] Toktaliev P.D., Martynenko S.I. Matematicheskaia model’ sistemy okhlazhdeniia kamer sgoraniia aviatsionnykh priamotochnykh dvigatelei na endotermicheskikh toplivakh [Mathematical Model of the Cooling System of Combustion Chambers of Aviation Ramjet Engines using Endothermic Fuels]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences]. 2015, vol. 58, no. 1, pp. 85–98.
[20] Shigabiev T.N., Ianovskii L.S., Galimov F.M., Ivanov V.F. Fizicheskii i khimicheskii khladoresurs uglevodorodnykh topliv [Physical and chemical hadarezer hydrocarbon fuels]. Kazan’, Master Lain publ., 2000. 240 p.
[21] Spolding D.B. Osnovy teorii goreniia [Fundamentals of the theory of combustion]. Moscow, Gosudarstvennoe energeticheskoe izdatel’stvo, 1959. 320 p.