Detonation of Air-Methane Mixture in a Supersonic Crossflow
Authors: Aleksandrov V.Yu., Arefyev K.Yu., Baskakov A.A., Ilchenko M.A. | Published: 20.02.2017 |
Published in issue: #2(683)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: detonation combustion, pressure pulsation, turbulent combustion, experimental study, propagation velocity of detonation wave front, degeneration of detonation |
The results of analytical description and experimental study of knocking combustion modes of air-methane mixture in a supersonic crossflow inside the cylinder are presented. A wide range of changes in the mass ratio of the components and the fuel mixture initial temperature is considered. A mathematical model for the prediction of the propagation rate of the detonation wave front is proposed. The model is validated by the original experimental results and empirical data of other authors. The possibility of implementing a pulsating mode of knocking combustion of the air-methane mixture is shown. The modes of detonation degeneration into turbulent combustion at high initial temperatures of the fuel mixture are determined. The data obtained can be used in experimental studies of detonation processes, designing and testing advanced energy and propulsion systems, bench and process equipment.
References
[1] Impul’snye detonatsionnye dvigateli [Pulse detonation engines]. Ed. Frolov S.M. Moscow, Torus press, 2006. 592 p.
[2] Ul’ianitskii V.Iu., Nenashev M.V., Kalashnikov V.V., Ibatullin I.D., Ganigin S.Iu., Iakunin K.P., Rogozhin P.V., Shtertser A.A. Opyt issledovaniia i primeneniia tekhnologii naneseniia detonatsionnykh pokrytii [Experience of research and application the technology of detonation coverings coating]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2010, vol. 12, no. 1(2), pp. 569–575.
[3] Nikolaev Yu.A., Vasil’ev A.A., Ul’yanitskii B.Yu. Gas detonation and its application in engineering and technologies (review). Combustion, Explosion, and Shock Waves, 2003, vol. 39, no. 4, pp. 382–410.
[4] Helfrich T.M., Schauer F., Bradley R., Hoke J. Ignition and Detonation-Initiation Characteristics of Hydrogen and Hydrocarbon Fuels in a PDE. 45thAIAA Aerospace Sciences Meeting and Exhibit, 8–11 January 2007, Reno, NV, AIAA-2007-234.
[5] Zipf Jr.R.K., Gamezo V.N., Sapko M.J., Marchewka W.P., Mohamed K.M., Oran E.S., Kessler D.A., Weiss E.S., Addis J.D., Karnack F.A., Sellers D.D. Methane-Air Detonation Experiments at NIOSH Lake Lynn Laboratory. Journal of Loss Prevention in the Process Industries, 2013, vol. 26, is. 2, pp. 281–396.
[6] Schultz E., Shepherd J. Validation of Detailed Reaction Mechanisms for Detonation Simulation. California Institute of Technology, Pasadena, CA. (Unpublished). Available at: http://resolver.caltech.edu/CaltechGALCITFM:1999.005.
[7] Zabaikin V.A., Naumov I.E., Tret’yakov P.K.Change in the regimes of flow and combustion in a channel under external energy action. Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 6, pp. 1331–1338.
[8] Aleksandrov V.Iu., Aref’ev K.Iu., Il’chenko M.A., Ananian M.V. Issledovanie effektivnosti rabochego protsessa v malogabaritnykh generatorakh vysokoental’piinogo vozdushnogo potoka [Research of Workflow Efficiency in High-Enthalpy Air Flow Compact Generators]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2015, no. 8, pp. 75–86. Available at: http://technomag.bmstu.ru/doc/798965.html, doi: 10.7463/0815.0798965 (accessed 01 September 2015).
[9] Landau L.D., Lifshits E.M. Teoreticheskaia fizika. T. 6. Gidrodinamika [Course of theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Fizmatlit publ., 2001. 736 p.
[10] Glagolev K.V., Morozov A.N. Fizicheskaia termodinamika [Physical thermodynamics]. Moscow, Bauman Press, 2007. 272 p.
[11] Vasil’ev A.A., Zvegintsev V.I., Nalivaichenko D.G. Detonation waves in a reactive supersonic flow. Combustion, Explosion, and Shock Waves, 2006, vol. 42, no. 5, pp. 568–581.
[12] Baskakov A.A., Kuz’michev D.N., Markov F.G., Karpushkin E.A. Eksperimental’nye issledovaniia kharakteristik detonatsionnoi volny, rasprostraniaiushcheisia v sverkhzvukovom potoke toplivovozdushnoi smesi [Experimental study of characteristics of detonation wave in a supersonic flow of fuel-air mixture]. Mat. 10 mezhdunar. shkoly-seminara «Modeli i metody aerodinamiki» [Materials of 10th International school-seminar «Models and methods of aerodynamics»]. Moscow, MTsNMO publ., 2010, pp. 15–17.
[13] Netleton M. Detonatsiia v gazakh [Detonation in gases]. Moscow, Mir publ., 1989. 280 p.
[14] Bendat Dzh., Pirsol A. Primenenie korreliatsionnogo i spektral’nogo analiza [Applications of correlation and spectral analysis]. Moscow, Mir publ., 1983. 312 p.
[15] Rausher K., Ianssen F., Minikhol’d R. Osnovy spektral’nogo analiza [Fundamentals of spectral analysis]. Moscow, Goriachaia liniia-Telekom publ., 2006. 224 p.