An Experimental Study of the Influence of Unpredictable Changes in the Form of the Resonant Cavity Leading Edge on the Operating Capacity of the Gas-Dynamic Ignition System
Authors: Aleksandrov V.Yu., Arefyev K.Yu., Ilchenko M.A. | Published: 24.03.2017 |
Published in issue: #3(684)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: gas-dynamic ignition system, pulsation process, heat release intensity, change of form, resonant cavity |
Gas-dynamic ignition systems are advanced devices for initiating working processes in aerospace propulsion. The use of such systems consisting of a booster nozzle and resonator enables application of kinetic energy of the fuel for local heating and ignition of the fuel mixture in the stagnant area of the resonant cavity. However, the efficiency of conversion of kinetic energy into thermal energy substantially depends on the configuration of the nozzle and resonator. Preliminary studies have shown that in the process of ignition unpredictable changes in the form of the elements of the gas-dynamic ignition system can occur due to significant thermal and chemical action. The leading edge of the resonant cavity is the most sensitive element to this phenomenon. An experimental study is conducted to determine the influence of the change in the form of the leading edge of the cavity on the intensity of heat release in the stagnant zone of the resonant cavity. The scheme of the experimental unit, methodology of the experiment and results of the analysis of the revealed patterns are presented. The data obtained can be used for designing, experimental development and running of gas-dynamic ignition systems as a part of propulsion plants for various purposes.
References
[1] 75 let tvorcheskoi nauchno-prakticheskoi deiatel’nosti TsIAM v aviadvigatelestroenii. Sb. nauch. tr. TsIAM [75 years of creative scientific activity in Aero engines. Collection of scientific works of CIAM]. Ed. Skibin V.A. Moscow, Aviamir publ., 2005. 320 p.
[2] Zhidkostnye raketnye dvigateli [Liquid-propellant rocket engines]. Ed. Iagodnikov D.A. Moscow, Bauman Press, 2005. 488 p.
[3] Hamed A., Das K., Basu D. Numerical Simulation of Unsteady Flow in Resonance Tube. 40th AIAA Aerospace Sciences Meeting and Exhibit, 2002, no. 1118, pp. 1–14.
[4] Voronetskii A.V., Aref’ev K.Iu., Zakharov V.S. Raschetno-teoreticheskoe issledovanie rezonansnoi sistemy gazodinamicheskogo vosplameneniia ZhRD maloi tiagi [Computational-Theoretical Study of Resonant System of Gasdynamical Ignition for Low-Thrust Liquid-Propellant Rocket Engines]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2012, no. 1, pp. 31–41.
[5] Aref’ev K.Yu., Il’chenko M.A., Voronetskii A.V. Dynamic characteristics of a resonant gas-dynamic system for ignition of a fuel mixture. Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 6, pp. 657–661.
[6] Sergienko A.A., Semenov V.V. Gazodinamicheskii vosplamenitel’ [The gas-dynamic igniter]. Izv. vuzov. Aviatsionnaia tekhnika [Russian Aeronautics]. 2000, no. 2, pp. 44–47.
[7] Vorozheeva O.A., Aref’ev K.Iu. Issledovanie effektivnosti okhlazhdeniia rezonatora gazodinamicheskoi sistemy vosplameneniia na dvukhfaznoi toplivnoi kompozitsii [Research into efficiency of resonator cooling in gas-dynamic ignition system with two-phase fuel composition]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2016, no. 12. Available at: http://dx.doi.org/10.18698/2308-6033-2016-12-1567 (accessed 30 November 2016).
[8] Kharitonov A.M. Tekhnika i metody aerofizicheskogo eksperimenta [Techniques and methods of aerophysical experiment]. Novosibirsk, NSTU publ., 2005. 348 p.
[9] Akhmanov S.A., Nikitin S.Iu. Fizicheskaia optika [Physical optics]. Moscow, Nauka publ., 2004. 654 p.
[10] Gimadiev A.G., Bystrov N.D., Ilyinsky S.A., Ermoshkin A.Z. Dinamicheskie ispytaniia zondov dlia izmereniia pul’satsii davleniia pri povyshennykh davleniiakh. [Dynamic tests of probes for measurement of pulsations pressure at the raised average pressure]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika S.P. Koroleva (natsional’nogo issledovatel’skogo universiteta) [Vestnik of Samara University. Aerospace and Mechanical Engineering]. 2009, no. 3, pp. 39–42.
[11] Metody izmereniia i obrabotki parametrov fizicheskikh protsessov pri ispytaniiakh aviatsionnykh dvigatelei i energeticheskikh ustanovok [Methods of measurement and processing parameters of the physical processes in the testing of aircraft engines and power plants]. Ed. Skibin V.A. Moscow, MATI-RGTU im. K.E. Tsiolkovskogo publ., 2007. 56 p.
[12] Glaznev V.N., Korobeinikov Yu.G. Hartmann Effect. Region of Existence and Oscillation Frequencies. Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, no. 4, pp. 616–620.
[13] Aleksandrov V.Iu., Aref’ev K.Iu., Il’chenko M.A. Raschetno-eksperimental’nye issledovaniia pul’satsionnykh protsessov v malogabaritnykh generatorakh vysokoental’piinogo potoka s gazodinamicheskoi sistemoi vosplameneniia [Numerical and experimental investigation non-stationary processes in the compact high enthalpy flows generators with gasdynamically ignition system]. Izvestiia RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering]. 2014, no. 6, pp. 96–107.
[14] Dulov V.G., Maksimov V.P. Termicheskii effekt rezonatora Gartmana–Shprengera v rezhime vysokikh chastot [Thermal e?ect of the Hartmann–Sprenger resonator in a highfrequency regime]. Vestnik Sankt-Peterburgskogo universiteta. Ser. 1. Matematika. Mekhanika. Astronomiia [Vestnik of the St. Petersburg University: Mathematics]. 2005, no. 1, pp. 79–86.
[15] Bychkov I.M., Vyshinsky V.V., Nosachev L.V. Investigation of the flow pattern in a gas-jet Hartmann resonator. Technical Physics. The Russian Journal of Applied Physics, 2009, vol. 54, no. 8, pp. 1110–1115.