Scientific and Practical Principles for Determining Structural and Technological Parameters of Standardized All-Metal High Pressure Spherical Tanks
Authors: Tarasov V.A., Baraev A.V., Boyarskaya R.V. | Published: 24.03.2017 |
Published in issue: #3(684)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: standardization of high pressure spherical tanks, compressed gases, structural and technological parameters, stored energy |
The statistical analysis of high pressure spherical tanks (HPST), series-produced in Russia, reveals correlations between the stored energy of the compressed gases and the design parameters of the tanks. It is established that deviations from the trend line values in the studied parameters are due to the operating conditions of the HPSTs. The algorithm of calculations of the design parameters for HPSTs based on the stored energy value is justified. A model range of parameters for standardized HPSTs is proposed. It is shown that the use of welding technologies that increase the strength of the joints results in a significant decrease of the HPST weight, and improved stamping methods reduce the cost associated with machining of the elements of the hemispheres.
References
[1] Medvedev A.A. Unifikatsiia kak sredstvo obespecheniia nizkoi udel’noi stoimosti i povysheniia nadezhnosti vyvedeniia poleznoi nagruzki raketami-nositeliami [Unification, as a means of ensuring a low unit cost and improve the reliability of removing the payload launch vehicles]. V kn. Aktual’nye problemy rossiiskoi kosmonavtiki: Trudy 33 Akademicheskikh chtenii po kosmonavtike [In the book Actual problems of Russian Astronautics: Proceedings of the XXXII Academic readings on cosmonautics]. Moscow, Komissiia RAN po razrabotke nauchnogo naslediia pionerov osvoeniia kosmicheskogo prostranstva publ., 2009, pp. 252–253.
[2] Tarasov V.A., Kashuba L.A. Teoreticheskie osnovy tekhnologii raketostroeniia [Theoretical foundations of rocket technology]. Moscow, Bauman Press, 2006. 351 p.
[3] Ukaz Prezidenta Rossiiskoi Federatsii V.V. Putina № 874 «O sisteme upravleniia raketno-kosmicheskoi otrasl’iu» ot 02 dekabria 2013 g. [The decree of the President of the Russian Federation V.V. Putin No. 874 «On the system of management of rocket-space industry» dated 02 December 2013]. Available at: http://www.kremlin.ru/acts/bank/37828 (accessed 25 October 2016).
[4] Vasil’ev V.N. Organizatsiia proizvodstva v usloviiakh rynka [Organization of production in the market]. Moscow, Mashinostroenie publ., 1993. 368 p.
[5] GOST 23945.0–80. Unifikatsiia izdelii. Osnovnye polozheniia [State Standard 23945.0–80. Unifying products. Fundamentals]. Moscow, Standartinform publ., 1991. 8 p.
[6] Antonov G.A. Osnovy standartizatsii i upravleniia kachestvom produktsii [Fundamentals of standardization and quality control]. Sankt-Petersburg, St. Petersburg State University of Economics publ., 2011. 684 p.
[7] Chumadin A.S., Ershov V.I., Barvinok V.A. Osnovy tekhnologii proizvodstva letatel’nykh apparatov (v konspektakh lektsii) [The basic technology of production of aircraft (lecture notes)]. Moscow, Nauka i tekhnologii publ., 2005. 912 p.
[8] Novye naukoemkie tekhnologii v tekhnike: Entsiklopediia. T. 12. Tekhnologicheskoe obespechenie slozhnykh tekhnicheskikh sistem. Chast’ 1 [New high technologies in engineering: Encyclopedia. Vol. 12. Technological support of complex technical systems. Pt. 1]. Ed. Kasaev K.S. Moscow, ZAO NII ENTsITEKh publ., 1998. 396 p.
[9] Klimenko Iu., Lysyi S., Medushevskii L. Mezhdunarodnaia standartizatsiia kommercheskoi raketno-kosmicheskoi tekhniki [International Standardization of Commercial CosmicMissile Systems]. Elektronika: nauka, tekhnologiia, biznes [Electronics: Science, Technology, Business]. 2001, no. 5, p. 74.
[10] Ostroverkh A.I., Sychev V.N., Tsyrkov A.V. Reinzhiniring sistemy organizatsionno-tekhnologicheskogo soprovozhdeniia protsessov proizvodstva raketno-kosmicheskoi tekhniki [Reengineering of organizational and technological support of production processes rocket and space technology]. Tekhnologiia mashinostroeniia [Engineering Technology]. 2006, no. 8, pp. 88–91.
[11] Ponticel P. Manufacturing technology combo a first for aerospace. SAE International, 2010. Available at: http://articles.sae.org/7376/ (accessed 24 November 2014).
[12] Shenaev M.O. Razrabotka metodiki i sredstv organizatsii tekhnicheskoi podgotovki seriinogo proizvodstva pnevmogidravlicheskikh sistem izdelii aviatsionnoi tekhniki. Diss. kand. tekhn. nauk [Development of methods and means of the organization of technical training for full-scale production of pneumatic hydraulic systems for aeronautical engineering products. Cand. tech. sci. diss.]. Moscow, 2009. 146 p.
[13] Aeronautics and space within the Air Liquide Group (2009). Available at: http://www.airliquide.com/file/otherelementcontent/pj/dp%20juin%2009%20ven55801.pdf (accessed 2 November 2014).
[14] Benedic F., Leard J.-P., Lefloch C. Helium High Pressure Tanks at EADS Space Transportation New Technology with Thermoplastic Liner, 2005. URL: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA445482 (accessed 01 October 2016).
[15] Tarasov V.A., Baraev A.V., Filimonov A.S., Boiarskaia R.V. Konstruktorsko-tekhnologicheskie osnovy unifikatsii parametrov tsel’nometallicheskikh ballonov vysokogo davleniia v raketno-kosmicheskom mashinostroenii [Design-Engineering Principles of Standardization of Characteristics of Solid-Metal High-Pressure Tanks in Rocket and Space Machine Building]. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2014, no. 5(98), pp. 70–84.