An Analytical Model of the Effective Technology for Thermal Preparation of Rocket Propellant in Tanks of Filling Systems of Ground-Based Complexes
Authors: Aleksandrov A.A., Barmin I.V., Pavlov S.K., Chugunkov V.V. | Published: 18.04.2017 |
Published in issue: #4(685)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: rocket fuel, thermal preparation, cooling and heating, tank with antifreeze, heat exchanger in antifreeze, liquid nitrogen |
Thermal preparation of rocket propellant prior to filling the tanks of launch vehicles, upper stages and spacecraft, is among the most energy-intensive and lengthy processes taking place at launch pads and technical areas of launch sites. The thermal preparation stage requires the use of efficient technologies and modes of cooling (heating) rocket fuel. To forecast the design and performance characteristics of the thermal preparation systems, analytical models are preferred. They allow the determination of parameters of the fuel cooling (heating) processes under specific conditions and requirements defined by the equipment of ground-based systems. This paper presents an analytical model of the effective technology of rocket propellant thermal preparation in the tanks of ground-based filling systems where the propellant is cooled (heated) in a heat exchanger, with the heat exchange process taking place in the tank with antifreeze. The cooling process of the propellant is based on bubbling of the antifreeze by liquid nitrogen; and the heating mode is provided by electric heating elements placed in the tank with the antifreeze. The calculated dependencies and the results of modelling the propellant temperature in filling tanks are presented, as well as relative consumption of liquid nitrogen in the cooling process as compared with other technologies.
References
[1] Aleksandrov A.A., Goncharov R.A., Igritskii V.A., Chugunkov V.V. Metodika vybora ratsional’nykh rezhimov okhlazhdeniia uglevodorodnogo goriuchego startovym oborudovaniem pered zapravkoi toplivnykh bakov rakety-nositelia [Methodology of Selection of Rational Regimes for Cooling the Hydrocarbon Fuel by Launch Equipment before Filling of Fuel Tanks of Launch Vehicle]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2011, no. 1, pp. 40–46.
[2] Denisov O.E., Zolin A.V., Denisova K.I. Metodika proektirovaniia bazy khraneniia i podgotovki vysokokipiashchikh komponentov raketnogo topliva kosmodroma «Vostochnyi» [Design Technique for the High-Boiling Propellant Storage and Preparation Facility at the Cosmodrome «Vostochny»]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 11, pp. 378–398. Available at: http://technomag.bmstu.ru/doc/732218.html (accessed 20 December 2016).
[3] Aleksandrov A.A., Barmin I.V., Kunis I.D., Chugunkov V.V. Osobennosti sozdaniia i razvitiia kriogennykh sistem raketno-kosmicheskikh startovykh kompleksov «Soiuz» [Characteristic features of creating and developing cryogenic systems of space-rocket launch complex «Soyuz»]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 2016, no. 2, pp. 7–27.
[4] Kobyzev S.V. Metodika rascheta koeffitsientov massootdachi pri osushke uglevodorodnogo raketnogo topliva [Method of calculation of mass transfer coefficients at drainage of hydrocarbon rocket propellant]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2011, no. 11. Available at: http://technomag.neicon.ru/doc/245147.html (accessed 20 December 2016).
[5] Kobyzev S.V. Modelirovanie massoobmennykh protsessov pri obezvozhivanii uglevodorodnogo raketnogo goriuchego barbotirovaniem azotom [Modeling mass transfer processes during dehydration of hydrocarbon rocket fuel by sparging with nitrogen]. Aktual’nye problemy rossiiskoi kosmonavtiki. Tr. 36 Akademicheskikh chtenii po kosmonavtike [Actual problems of Russian cosmonautics. Proceedings 36 academic readings on cosmonautics]. Moscow, Komissiia RAN publ., 2012, pp. 356–357.
[6] Kobyzev S.V. Metodika poverochnogo rascheta protsessa osushki uglevodorodnogo goriuchego metodom barbotazha gazoobraznym azotom [The method of calibration calculation process of dehydration of hydrocarbon fuels a method of sparging gaseous nitrogen]. Aktual’nye problemy Rossiiskoi kosmonavtiki. Materialy 37 akademicheskikh chtenii po kosmonavtike [Actual problems of Russian cosmonautics. Proceedings 37 academic readings on cosmonautics]. Moscow, Komissiia RAN publ., 2013, pp. 385–386.
[7] Denisova K.I., Zolin A.V., Pavlov S.K., Chugunkov V.V. Analiz variantov okhlazhdeniia komponentov raketnogo topliva v sostave oborudovaniia nazemnykh kompleksov s ispol’zovaniem zhidkogo azota [Analysis of cooling options for rocket fuel components in ground-based equipment using liquid nitrogen]. Sbornik tezisov 40 Akademicheskikh chtenii po kosmonavtike [Theses 40 Academic Conference on Astronautics]. Moscow, Bauman Press, 2015, pp. 238–239.
[8] Kobyzev S.V., Zolin A.V., Chugunkov V.V. Postroenie ratsional’noi skhemy podgotovki uglevodorodnogo goriuchego po temperature i vlagosoderzhaniiu s ispol’zovaniem zhidkogo i gazoobraznogo azota na startovom i tekhnicheskom kompleksakh kosmodroma [Building a rational scheme of preparation of hydrocarbon fuels according to temperature and moisture content with use of liquid and gaseous nitrogen at launch and technical spaceport complexes]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2012, no. 10. Available at: http://technomag.neicon.ru/doc/486647.html (accessed 20 December 2016).
[9] Komlev D.E., Solov’ev V.I. Okhlazhdenie naftila metodom kriogennogo barbotazha [Cooling naphthyl cryogenic method of bubbling]. Novosti tekhniki: sbornik [Technology News: collection]. Moscow, KBTM publ., 2004, pp. 137–141.
[10] Denisov O.E., Zolin A.V., Chugunkov V.V. Metodika modelirovaniia okhlazhdeniia komponentov raketnogo topliva s primeneniem zhidkogo azota i promezhutochnogo teplonositelia [Simulation methods of rocket fuel refrigerating with liquid nitrogen and intermediate heat carrier]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 3, pp. 145–161. Available at: http://technomag.bmstu.ru/doc/699941.html (accessed 21 December 2016).
[11] Zolin A.V., Chugunkov V.V. Modelirovanie protsessov temperaturnoi podgotovki raketnogo goriuchego v sisteme zapravki startovogo kompleksa [Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System]. Aerokosmicheskii nauchnyi zhurnal [Aerospace scientific journal]. 2015, no. 6. Available at: http://aerospjournal.ru/doc/826690.html (accessed 21 December 2016).
[12] Wen D.S., Chen H.S., Ding Y.L., Dearman P. Liquid nitrogen injection into water: pressure build-up and heat transfer. Cryogenics, 2006, vol. 46, no. 10, pp. 740–748.
[13] Domashenko A.M., Blinova I.D. Issledovaniia teplomassoobmena pri sbrose kriogennykh produktov v vodu [Research of heat and mass-exchange under water burial of cryogenic products]. Khimicheskoe i neftegazovoe mashinostroenie [Chemical and petroleum engineering]. 2007, no. 12, pp. 17–19.
[14] Nakoriakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Vskipanie strui zhidkogo azota, inzhektirovannogo v vodu [Boiling-up of liquid nitrogen injected into water]. Sovremennaia nauka: issledovaniia, idei, rezul’taty, tekhnologii [Modern science: researches, ideas, results, technologies]. 2013, no. 1(12), pp. 260–264.
[15] Nakoriakov V.E., Tsoi A.N., Mezentsev I.V., Meleshkin A.V. Eksperimental’nye issledovaniia protsessa inzhektsii zhidkogo azota v vodu [Boiling-up of liquid nitrogen jet in water]. Teplofizika i aeromekhanika [Thermophysics and Aeromechanics]. 2014, no. 3, pp. 293–298.
[16] Pavlov S.K., Chugunkov V.V. Matematicheskaia model’ protsessa temperaturnoi podgotovki komponentov zhidkogo raketnogo topliva s ispol’zovaniem teploobmennika i teplonositelia, okhlazhdaemogo zhidkim azotom [Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 12, pp. 128–136. Available at: http://technomag.bmstu.ru/doc/744330.html (accessed 21 December 2016).
[17] Pavlov S.K., Chugunkov V.V. Povyshenie effektivnosti sistemy okhlazhdeniia raketnogo topliva s ispol’zovaniem teploobmennika i antifriza, okhlazhdaemogo zhidkim azotom [Enhancing the efficiency of the propellant cooling system using a heat exchanger and antifreeze being cooled by liquid nitrogen]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2016, is. 1(49). Available at: http://engjournal.ru/catalog/arse/teje/1461.html (accessed 21 December 2016).