Numerical Simulation of Heat Transfer and Determination of Thermal and Hydraulic Characteristics in a Coiled Test Bench Heat Exchanger
Authors: Aleksandrov V.Yu., Koroleva A.P., Kukshinov N.V., Frantsuzov M.S. | Published: 23.11.2017 |
Published in issue: #11(692)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: coiled heat exchanger, thermal and hydraulic characteristics, heat exchange surface, conjugate problem, numerical simulation |
In this paper, numerical simulation of heat transfer in a coiled heat exchanger is performed. The investigated multithread coiled heat exchanger is part of the equipment for conducting aviation engines tests. The heat exchanger is used for decreasing gas temperature before shut-off fittings of the test facility. A numerical calculation of the conjugate heat transfer is performed. Characteristics of the flow and heat transfer are determined for various Reynolds numbers. Integral parameters of the heat exchanger (pressure drop and temperature drop) are estimated. The dependences of thermal and hydraulic characteristics of the heat exchanger on the Reynolds number are defined. Distribution patterns of thermohydraulic parameters (temperature, pressure, velocity) are presented for typical flow regimes.
References
[1] Mashiny i apparaty khimicheskikh i neftekhimicheskikh proizvodstv. Mashinostroenie. Entsiklopediia [Machines and apparatuses of chemical and petrochemical industries. Engineering. Encyclopedia]. Ed. Frolov K.V. Moscow, Mashinostroenie publ., vol. IV-12, 2004. 832 p.
[2] Martynenko O.G. Spravochnik po teploobmennym apparatam [Handbook for heat exchangers]. Moscow, Energoatomizdat publ., vol. 1, 1987. 560 p.
[3] Solonin V.I., Satin A.A. Modelirovanie teploobmena v zmeevikovom teploobmennike primenitel’no k reaktornoi ustanovke «UNITERM» [Modeling of Heat Transfer in the He-lical-Coil Heat Exchanger for the Reactor Facility «UNITERM»]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of Bauman MSTU]. 2014, no. 10, pp. 398–412. Available at: http://technomag.bmstu.ru/doc/727220.html (accessed 15 May 2017).
[4] Naphon P. Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer, 2007, vol. 34(3), pp. 321–330.
[5] Napho P., Wongwises S. A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 2006, vol. 10, no. 5, pp. 463–490.
[6] Jayakumar J.S., Mahajani S.M., Mandal J.C., Vijayan P.K., Bhoi R. Experimental and CFD estimation of heat transfer in helically coiled heat exchangers. Chemical Engineering Research and Design, 2008, vol. 86(3), pp. 221–232.
[7] Shokouhmand H., Salimpour M.R., Akhavan-Behabadi M.A. Experimental investigation of shell and coiled tube heat exchangers using Wilson plots. International Communications in Heat and Mass Transfer, 2007, vol. 35(1), pp. 84–92.
[8] Ghorbani N., Taherian H., Gorji M., Mirgolbabaei H. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers. Experimental Thermal and Fluid Science, 2010, vol. 34(7), pp. 900–905.
[9] Ghorbani N., Taherian H., Gorji M., Mirgolbabaei H. An experimental study of thermal performance of shell-and-coil heat exchangers. International Communications in Heat and Mass Transfer, 2010, vol. 37(7), pp. 775–781.
[10] Salimpour M.R. Heat transfer of a temperature-dependent-property fluid in shell and tube heat exchangers. International Communications in Heat and Mass Transfer, 2008, vol. 35(9), pp. 1190–1195.
[11] Salimpour M.R. Heat transfer coefficients of shell and coiled tube heat exchangers. Experimental Thermal and Fluid Science, 2009, vol. 33(2), pp. 203–207.
[12] Naphon P., Suwagrai J. Effect of curvature ratios on the heat transfer and flow developments in the horizontal spirally coiled tubes. International Journal of Heat and Mass Transfer, 2007, vol. 50(3–4), pp. 444–451.
[13] Chen C.-N., Han J.-T., Shao L., Chen W.-W., Jen T.-C. Experimental study on CHF characteristics of R134a flow boiling in horizontal helically-coiled tubes. 14th International Heat Transfer Conference, 8–13 August 2010, Washington, 2010, vol. 1, pp. 337–346.
[14] Naphon P., Wongwises S. A study of the heat transfer characteristics of a compact spiral coil heat exchanger under wet-surface conditions. Experimental Thermal and Fluid Science, 2005, vol. 29, pp. 511–521.
[15] Zamankhan P. Heat transfer in counterflow heat exchangers with helical turbulators. Communications in Nonlinear Science and Numerical Simulation, 2010, vol. 15(10), pp. 2894–2907.
[16] Kharat R., Bhardwaj N., Jha R.S. Development of heat transfer coefficient correlation for concentric helical coil heat exchanger. International Journal of Thermal Sciences, 2009, vol. 48(12), pp. 2300–2308.
[17] Naphon P. Thermal performance and pressure drop of the helical-coil heat exchangers with and without helically crimped fins. International Communications in Heat and Mass Transfer, 2007, vol. 34, is. 3, pp. 321–330.
[18] Rennie T.J., Raghavan V.G.S. Experimental studies of a double-pipe helical heat exchanger. Experimental Thermal and Fluid Science, 2005, vol. 29(8), pp. 919–924.
[19] Prabhanjan D.G., Raghavan G.S.V., Rennie T.J. Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger. International Communications in Heat and Mass Transfer, 2002, vol. 29(2), pp. 185–191.
[20] Aleksandrov V.Iu., Aref’ev K.Iu., Il’chenko M.A., Ananian M.V. Issledovanie effektivnosti rabochego protsessa v malogabaritnykh generatorakh vysokoental’piinogo vozdushnogo potoka [Research of Workflow Efficiency in High-Enthalpy Air Flow Compact Generators]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of Bauman MSTU]. 2015, no. 8, pp. 75–86. Available at: http://technomag.bmstu.ru/doc/798965.html (accessed 1 September 2015).
[21] Aleksandrov V.Yu., Aref’ev K.Yu., Il’chenko M.A. Numerical and experimental study of oscillatory processes in small-size combustion heaters of air. Combustion, Explosion, and Shock Waves, 2016, vol. 52, no. 4, pp. 439–445.
[22] Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook on thermophysical properties of gases and liquids]. Moscow, Nauka publ., 1972. 721 p.
[23] Favre A. Equations des gaz turbulents compressibles. Part 1: Formes generales. Journal de Mecanique, 1965, vol. 4, no. 3, pp. 361–390.
[24] Favre A. Equations des gaz turbulents compressibles. Part 2: method des vitesses moyennes; methode des vitesses moyennes ponderees par la masse volumique. Journal de Mecanique, 1965, vol. 4, no. 3, pp. 391–421.