Justification of the Technological Modes of Repeated Impregnation-Drying and the Subsequent Autoclave Processing to Provide the Required Composition of the Thermal Protection Material and its Minimal Production Time
Authors: Nelyub V.A., Tarasov V.A., Romanenkov V.A., Komkov M.A., Boyarskaya R.V. | Published: 19.12.2017 |
Published in issue: #12(693)/2017 | |
Category: Aviation, Rocket and Technology | |
Keywords: thermal protection, composite material, fibrous filler, binder, phenol-formaldehyde resin, volatile constituents |
This paper examines technological questions to ensure adherence to the requirements to the content and uniformity of distribution of phenol-formaldehyde resin in thermal protection systems of descending spacecraft. It justifies the requirement to the permissible content of volatile constituents before autoclave treatment. The adherence to this requirement guarantees achieving a certain ratio of the volumes of fibrous filler and phenol-formaldehyde resin, necessary for the functioning of the thermal protection system. The dynamics of the volatile constituent content in prepreg is studied under the increasing number of cycles of filler impregnation by the binder and the subsequent vacuum drying. It is shown that to provide the desired content of phenol-formaldehyde resin in the finished product and a homogeneous structure of the thermal protection material, triple impregnation is required. The technological modes of the repeated impregnation-drying cycles that ensure the minimal manufacturing time of the spacecraft thermal protection material are determined.
References
[1] Semenov A.A. Spuskaemaia kapsula kosmicheskogo apparata [Landing capsule of the spacecraft]. Sankt-Petersburg, Neva publ., 2009. 72 p.
[2] Teplovaia zashchita [Thermal protection]. Ed. Polezhaev Iu.V., Iurevich F.B., Lykov A.V. Moscow, Energiia publ., 1976. 392 p.
[3] Suong V.H. Principles of the Manufacturing of Composite Materials. Lancaster, Pennsylvania, DEStech Publications Inc., 2009. 352 p.
[4] Tarasov V.A., Beliakov E.V. Matematicheskoe modelirovanie protsessa neizotermicheskogo otverzhdeniia polimernykh kompozitnykh konstruktsii RKT [Mathematical Simulation of Nonisothermal Hardening of Polymeric Composite Structures of Rocket and Space Machinery]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2011, no. 1, pp. 113–120.
[5] Tarasov V.A., Boiarskaia R.V., Iliukhina A.A., Kariagin A.A., Kudriavtsev A.A. Issledovanie perspektiv ul’trazvukovoi intensifikatsii protsessa propitki bakelitovym lakom LBS-4 poristykh steklopaketov [A study on the prospects of ultrasonic intensification of the process of impregnation with bakelite varnish LBS-4 porous glass]. Vse materialy. Entsiklopedicheskii spravochnik [Polymer Science. Series D]. 2016, no. 9, pp. 10–14.
[6] Zhilin A.A., Fedorov A.V. Fiziko-matematicheskoe modelirovanie protsessov kapilliarnoi propitki poristykh materialov [Physico-mathematical modeling of processes of capillary impregnation of porous materials]. Prikladnaia mekhanika i tekhnicheskaia fizika [Journal of Applied Mechanics and Technical Physics]. 2009, vol. 50, no. 1, pp. 42–51.
[7] Senoguz M.T., Dungan F.D., Sastry A.M., Klamo J.T. Simulations and Experiments on Low-Pressure Permeation of Fabrics: Part II – the Variable Gap Model and Prediction of Permeability. Journal of composite materials, 2001, vol. 35, no. 14, pp. 1258–1322.
[8] Glebov I.V., Kotenko V.D., Romanenkov V.A. Matematicheskaia model’ mnogokratnoi propitki poristykh tel rastvorami polimerov [A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of Bauman MSTU]. 2015, no. 11, pp. 238–252. Available at: http://old.technomag.edu.ru/doc/820714.html (accessed 15 June 2017).
[9] Ferland P., Guittard D., Trochu F. Concurrent methods for permeability measurement in resin transfer molding. Polymer composites, 1996, vol. 17, no. 1, pp. 149–158.
[10] Romanenkov V.A., Strekalov A.F., Pashchenko V.A., Kuznetsova L.N., Romanenkova E.I., Kotenko V.D., Abrazumov V.V., Sapozhnikov I.V., Glebov I.V. Sposob izgotovleniia preprega s avtomaticheskim kontrolem tekhnologicheskogo protsessa [A method of manufacturing a prepreg with automatic process control]. Patent RF no. 2565709, 2015. 11 p.
[11] Neliub V.A., Borodulin A.S., Kobets L.P., Malysheva G.V. Kapilliarnaia gidrodinamika oligomernykh sviazuiushchikh [Capillary hydrodynamics of oligomeric binder]. Vse materialy. Entsiklopedicheskii spravochnik [Polymer Science. Series D]. 2016, no. 3, pp. 43–48.
[12] Borodulin A.S., Marycheva A.N., Malysheva G.V. Simulation of impregnation kinetics of fabric fillers in the production of fiberglass articles. Glass Physics and Chemistry, 2015, vol. 41, no. 6, pp. 660–664.
[13] Borodulin A.S., Malysheva G.V., Romanova I.K. Optimization of rheological properties of binders used in vacuum assisted resin transfer molding of fiberglass. Polymer Science. Series D, 2015, vol. 8, no. 4, pp. 300–303.
[14] Beliaev A.Iu. Usrednenie v zadachakh teorii fil’tratsii [Averaging in problems of filtration theory]. Moscow, Nauka publ., 2004. 200 p.
[15] Parnas R., Flynn K., Dal-Favero M. A permeability Database for Composite Manufacturing. Polymer Composites, 1997, vol. 18, no. 5, pp. 623–633.
[16] Komkov M.A., Tarasov V.A., Kuznetsov V.M. The influence of epoxide resin viscosity on impregnation of fiber reinforcement. Polymer Science. Series D, 2015, vol. 8, is. 4, pp. 292–295, doi: 10.1134/S1995421215040073.